
www.manaraa.com

Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-19-2019 10:30 AM

Implementation of User-Independent Hand Gesture Recognition Implementation of User-Independent Hand Gesture Recognition

Classification Models Using IMU and EMG-based Sensor Fusion Classification Models Using IMU and EMG-based Sensor Fusion

Techniques Techniques

José Guillermo Collí Alfaro
The University of Western Ontario

Supervisor

Trejos, Ana Luisa

The University of Western Ontario

Graduate Program in Biomedical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© José Guillermo Collí Alfaro 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Collí Alfaro, José Guillermo, "Implementation of User-Independent Hand Gesture Recognition
Classification Models Using IMU and EMG-based Sensor Fusion Techniques" (2019). Electronic Thesis
and Dissertation Repository. 6347.
https://ir.lib.uwo.ca/etd/6347

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6347?utm_source=ir.lib.uwo.ca%2Fetd%2F6347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

www.manaraa.com

Implementation of User-Independent Hand Gesture Recognition

Classification Models Using IMU and EMG-based Sensor Fusion

Techniques

José Guillermo Colĺı Alfaro

M.E.Sc. Thesis, 2019

School of Biomedical Engineering

The University of Western Ontario

Abstract

According to the World Health Organization, stroke is the third leading cause of disability. A

common consequence of stroke is hemiparesis, which leads to the impairment of one side of the

body and affects the performance of activities of daily living. It has been proven that targeting the

motor impairments as early as possible while using wearable mechatronic devices as a robot assisted

therapy, and letting the patient be in control of the robotic system can improve the rehabilitation

outcomes. However, despite the increased progress on control methods for wearable mechatronic

devices, the need for a more natural interface that allows for better control remains.

This work presents, a user-independent gesture classification method based on a sensor fu-

sion technique that combines surface electromyography (EMG) and an inertial measurement unit

(IMU). The Myo Armband was used to measure muscle activity and motion data from healthy

subjects. Participants were asked to perform 10 types of gestures in 4 different arm positions while

using the Myo on their dominant limb. Data obtained from 22 participants were used to classify

the gestures using 4 different classification methods. Finally, for each classification method, a

5-fold cross-validation method was used to test the efficacy of the classification algorithms. Over-

all classification accuracies in the range of 33.11%–72.1% were obtained. However, following the

optimization of the gesture datasets, the overall classification accuracies increased to the range

of 45.5%–84.5%. These results suggest that by using the proposed sensor fusion approach, it is

possible to achieve a more natural human machine interface that allows better control of wearable

mechatronic devices during robot assisted therapies.

Index terms— Body-machine interfaces, wearable robotic systems.

i

www.manaraa.com

Lay Summary

According to the World Health Organization, stroke is the third leading cause of disability.

A common consequence of stroke is the paralysis on one side of the body, which affects the per-

formance of activities of daily living. It has been proven that treating this paralysis as early

as possible using devices that combines both electrical and mechanical components, can improve

the rehabilitation outcomes. However, despite the increase progress on control methods for these

devices, a need for a more natural interface that allows for an intuitive interaction remains.

This work presents, a comparison of multiple interfaces based on gesture recognition that allow

a natural interaction with a wearable robotic device. Muscle electrical activity of the forearm, and

motion data were collected from 22 healthy participants while they performed 10 types of gestures

in 4 different arm positions. These data were used to train four interfaces to recognize these 10

gestures.

Each interface was evaluated on its ability to differentiate between gestures after being trained

using only the data obtained from the muscles’ electrical activity, and after being trained using

both, the muscle electrical activity and motion data. The results obtained suggest that it is possible

to achieve a more natural interaction with wearable devices during robot assisted therapies.

ii

www.manaraa.com

Acknowledgements

First and foremost, I would like to express my appreciation for the guidance provided by my

supervisor, Dr. Ana Luisa Trejos. It is because of her that I was able to do a Masters degree.

I feel extremely lucky to have had such a wonderful person providing guidance throughout this

journey. I am extremely thankful to have been a part of the Wearable Biomechatronics Laboratory.

I would like to express my gratitude to each member that is, and has been, part of this awesome

group. Special thanks goes to Anas Ibrahim for his help on with the neural network models. A

big thanks goes to Jacob Tryon for helping me with the statistical analyses. You are the best,

around! I would also like to thank Yue Zhou, for his constant support and guidance during these

two years (and also for introducing me to rock climbing).

A big thanks goes to my parents José Luis Colĺı Solis and Militza Alfaro Gamboa for always

being there when I needed them the most, and for believing in me. I love you. A thanks goes

to my brother and sister as well, it was weird not having you around. Thanks to the group

#325:NameOfADayEvent, and the rest of my friends in México, guys you are breathtaking! Lastly,

I want to express my most sincere gratitude towards my fiancée Maremy Castillo Ocampo, for all

these years of constant love and support. Thanks for being by my side on every decision I take. I

love you so much.

This work was supported by the Natural Sciences and Engineering Research Council (NSERC)

of Canada under grant RGPIN-2014-03815; by the Canadian Foundation for Innovation (CFI),

by the Ontario Research Fund (ORF); and by the Ontario Ministry of Economic Development,

Trade and Employment and the Ontario Ministry of Research and Innovation through the Early

Researcher Award. Thanks to the Mexican National Council of Science and Technology (CONA-

CYT) for funding my studies.

iii

www.manaraa.com

Contents

Abstract i

Lay Summary ii

Acknowledgements iii

Table of Contents iv

List of Figures x

List of Tables xii

Nomenclature and Acronyms xiv

1 Introduction 1

1.1 Motivation . 2

1.2 General Problem Statement . 3

1.3 Research Objectives and Scope . 4

1.4 Overview of the Thesis . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Wrist Anatomy . 6

2.3 Wrist Rehabilitation . 7

2.3.1 Constraint-Induced Movement Therapy . 8

iv

www.manaraa.com

CONTENTS v

2.3.2 Bilateral Movement Training . 8

2.4 Robot-Assisted Therapy . 9

2.5 Motion Intention Detection vs. Gesture Recognition 10

2.6 User-Indpendent Gesture Recognition . 13

2.7 EMG Pattern Recognition . 14

2.7.1 EMG Data Collection . 14

2.7.2 EMG Data Segmentation . 15

2.7.2.1 Teager-Kaiser Energy Operator . 15

2.7.2.2 Data Windowing . 15

2.7.3 Feature Extraction . 16

2.7.3.1 Time Domain Features . 16

2.7.3.2 Frequency Domain Features . 18

2.7.4 Classification Methods . 19

2.7.4.1 Support Vector Machines . 19

2.7.4.2 Least Squares Support Vector Machines 20

2.7.4.3 Multilayer Perceptron Neural Networks 20

2.8 User-Independent Classification Methods . 21

2.8.1 Particle Adaptive Classifier . 21

2.8.2 Adaptive LS-SVM . 22

2.8.3 Bilinear Models . 22

2.9 Conclusion . 24

3 Data Collection and Processing 25

3.1 Equipment . 25

3.1.1 The Myo Armband . 25

3.1.2 Data Analysis Software . 27

3.2 Participant Recruitment . 27

3.3 Experimental Protocol . 27

3.3.1 Myo Armband Placement . 28

www.manaraa.com

CONTENTS vi

3.3.2 Gestures . 29

3.4 Data Processing . 30

3.4.1 Signal Segmentation . 31

3.4.2 Feature Extraction . 34

3.4.3 Cross-Validation Sets . 35

3.5 Summary of Data Collection and Processing . 36

4 Classification Methods 37

4.1 Classification Method: PAC . 37

4.1.1 Feature Normalization and Feature Reduction 37

4.1.2 Calibration Phase . 38

4.1.3 The Representative Sample Set . 40

4.1.4 The Representative Particles Attractive Zone 41

4.1.5 PAC Evaluation . 43

4.2 Classification Method: Adaptive LS-SVM . 43

4.2.1 Calibration Phase . 44

4.2.2 The Leave-One-Out Prediction . 44

4.2.3 Adaptive LS-SVM From Multiple Subjects 47

4.2.4 Adaptive LS-SVM Evaluation . 50

4.3 Classification Method: Bilinear Model-based Classification 50

4.3.1 Bilinear Model-based Classification: Datasets 50

4.3.2 Bilinear Model Learning . 51

4.3.3 Calibration Phase . 55

4.3.4 Bilinear Model Evaluation . 56

4.4 Classification Method: MLP Neural Networks . 56

4.4.1 MLP Dataset . 56

4.4.2 MLP Learning . 56

4.4.3 MLP Network Evaluation . 59

www.manaraa.com

CONTENTS vii

5 Results and Discussion 60

5.1 PAC Classification . 60

5.1.1 PAC: 10 Gesture Classification . 61

5.1.2 PAC: 7 Gesture Classification . 64

5.1.3 PAC: Discussion . 67

5.2 Adaptive LS-SVM Classification . 69

5.2.1 Adaptive LS-SVM: 10 Gesture Classification 69

5.2.2 Adaptive LS-SVM: 7 Gesture Classification 72

5.2.3 Adaptive LS-SVM: Discussion . 75

5.3 Bilinear Model-Based Classification . 76

5.3.1 Bilinear Models-Based Classification: 10 Gesture Classification 77

5.3.2 Bilinear Models-Based Classification: 7 Gesture Classification 80

5.3.3 Bilinear Models-Based Classification: Discussion 83

5.4 MLP Networks Classification . 84

5.4.1 MLP Networks: 10 Gesture Classification 85

5.4.2 MLP Networks: 7 Gesture Classification . 88

5.4.3 MLP Networks: Discussion . 91

5.5 Comparison of Classification Methods . 92

5.5.1 Pairwise Comparisons . 93

5.5.2 Best Sensor Modality Pairwise Comparisons 98

5.6 Conclusion . 100

6 Concluding Remarks 102

6.1 Contributions . 103

6.2 Limitations and Future Work . 104

References 108

Appendices 118

www.manaraa.com

CONTENTS viii

A Permissions and Approvals 118

A.1 Ethics Approval . 118

A.2 Permission for Figure 2.1 . 120

B MATLAB Code 126

B.1 Data Processing Codes . 126

B.1.1 Extract Subject Data Code . 126

B.1.2 Main Routine Code . 130

B.1.3 Signal Filtering Codes . 133

B.1.4 Signal Conditioning Codes . 134

B.1.5 Onset Detection Code . 135

B.2 Feature Extraction Codes . 138

B.2.1 Vectorization Code . 138

B.2.2 MAV and MAVS Features Code . 142

B.2.3 WL Feature Code . 142

B.2.4 ZC Feature Code . 143

B.2.5 AR Coefficients Feature Code . 143

B.2.6 Mean Feature Code . 144

B.2.7 Std Feature Code . 144

B.2.8 RMS Feature Code . 144

B.3 Feature Normalization Code . 145

B.4 Feature Reduction Code . 145

B.5 Classification Codes . 147

B.5.1 LS-SVM Code . 147

B.5.1.1 Predict LS-SVM Code . 152

B.5.1.2 Get LS-SVM Parameters Code . 153

B.5.1.3 Compute RBF Kernel Code . 155

B.5.2 PAC Code . 155

B.5.2.1 K Medoids Code . 161

www.manaraa.com

CONTENTS ix

B.5.2.2 Universal Incremental Learning Code 163

B.5.3 Adaptive LS-SVM Code . 165

B.5.3.1 Inverse Block Matrix Code . 169

B.5.3.2 Projected Sub-Gradient Descent Code 170

B.5.4 Bilinear Model Codes . 173

B.5.4.1 Learn Bilinear Models Code . 179

B.5.4.2 Style and Content Separation Code 181

B.5.4.3 Vector Transpose Code . 182

B.6 General Purpose Codes . 183

B.6.1 Reduce Number of Gestures Code . 183

C Mathematical Formulations 186

C.1 Least Squares Support Vector Machines . 186

C.2 Adaptive LS-SVM . 187

C.2.1 Adaptive LS-SVM From Multiple Subjects 189

D Python Code 190

D.1 Real-Time EMG Data Streaming . 190

D.2 Classification Using Bilinear EMG Models . 193

E R Code 198

E.1 Train MLP . 198

E.2 Predict MLP . 200

Vita 203

www.manaraa.com

List of Figures

2.1 Anterior and posterior views of the bones in the wrist. 7

2.2 Example of robotic devices that can be used during upper limb rehabilitation. . . . 10

2.3 General procedure of an EMG pattern recognition system 14

2.4 MLP network model. 21

2.5 Representation of the EMG symmetric model. 23

3.1 The Myo Armband showing the labels for each sensor. 26

3.2 Custom data acquisition software developed. 26

3.3 Placement of the Myo Armband on the user’s dominant arm. 29

3.4 Recorded wrist and finger motions. 30

3.5 Arm positions used during data acquisition . 30

3.6 EMG and IMU data collection and processing. 31

3.7 Application of TKEO to each EMG channel of the Myo Armband. 32

3.8 Myo Armband averaged EMG signal and smoothed EMG signal. 32

3.9 Active region of each EMG channel. 33

3.10 Summary of the data collection process. 35

4.1 Summary of the PAC calibration phase. 39

4.2 Learning process of the PAC classification method. 42

4.3 Evaluation of the classification performance of the PAC classification method. . . . 43

4.4 Summary of the Adaptive LS-SVM calibration phase. 45

4.5 Learning process of the Adaptive LS-SVM classification method. 49

x

www.manaraa.com

LIST OF FIGURES xi

4.6 Architecture of the NN used to train the bilinear model-based classifier. 53

4.7 Bilinear model learning process. 54

4.8 Procedure used to create the MLP dataset. 57

4.9 MLP network learning. 58

4.10 Architecture of the MLP network. 58

5.1 PAC confusion matrix of the 10 gestures collected using EMG data, and EMG and

IMU data. 63

5.2 PAC confusion matrix of the 7 gestures collected using EMG data, and EMG and

IMU data. 66

5.3 Adaptive LS-SVM confusion matrix of the 10 gestures collected using EMG data,

and EMG and IMU data. 71

5.4 Adaptive LS-SVM confusion matrix of the 7 gestures collected using EMG data,

and EMG and IMU data. 74

5.5 bilinear models-based confusion matrix of the 10 gestures collected using EMG data,

and EMG and IMU data. 79

5.6 bilinear models-based confusion matrix of the 7 gestures collected EMG data, and

EMG and IMU data. 82

5.7 MLP networks confusion matrix of the 10 gestures collected using EMG data, and

EMG and IMU data. 87

5.8 MLP networks confusion matrix of the 7 gestures collected using EMG data, and

EMG and IMU data. 90

5.9 Interaction between the classification methods and the sensor modality. 96

5.10 Overall accuracies of the classification methods using EMG data, and EMG and

IMU data. 97

5.11 Overall accuracies of the classification methods from the best sensor modality. . . . 100

www.manaraa.com

List of Tables

2.1 Average reange of motion of the wrist joint. 8

2.2 Control modalities used during robot-assisted therapies. 11

3.1 Summary of participant information. 27

3.2 Myo Armband sensor placement. 28

4.1 RSNNS MLP network parameters. 59

5.1 Classification accuracies of 10 gestures using the PAC classification method. 62

5.2 Classification accuracies of 7 gestures using PAC classification method. 65

5.3 Classification accuracies of 10 gestures using the Adaptive LS-SVM classification

method. 70

5.4 Classification accuracies of 7 gestures using the Adaptive LS-SVM classification

method. 73

5.5 Classification accuracies of 10 gestures using bilinear models-based classification

method. 78

5.6 Classification accuracies of 7 gestures using bilinear models-based classification

method. 81

5.7 Classification accuracies of 10 gestures using MLP networks classification method. 86

5.8 Classification accuracies of 7 gestures using MLP networks classification method. . 89

5.9 Pairwise comparison of the different classification methods used with the 10 gesture

dataset. 94

xii

www.manaraa.com

LIST OF TABLES xiii

5.10 Pairwise comparison of the different classification methods used with the 7 gesture

dataset. 95

5.11 Pairwise comparison of the different classification methods using the best sensor

modality with the 10 gesture dataset. 98

5.12 Pairwise comparison of the different classification methods using the best sensor

modality with the 7 gesture dataset. 99

www.manaraa.com

Nomenclature and Acronyms

Latin Letters

b Machine learning models bias term

d(·) Kernel distance function

C SVM regularization term

I Identity matrix

`(·) Convex multiclass loss function

K(·) Kernel function

L(·) Lagrangian

SMA
Schur complement of matrix MA

w Weights vector

ŵ Pretrained LS-SVM model

Xcal Calibration dataset obtained during the PAC and Adaptive LS-SVM

classification methods

Xtest Test dataset obtained during the PAC and Adaptive LS-SVM classification

methods

Xtrain Dataset used for training during the PAC and Adaptive LS-SVM classification

methods

Yi Predicted label of the ith sample

Ŷi Prediction of the ith sample obtained by using a pretrained LS-SVM model

xiv

www.manaraa.com

NOMENCLATURE AND ACRONYMS xv

Ỹi Closed form solution of the leave-one-out prediction of the ith sample

Greek Letters

αi Vector of support vectors

β Scaling factor that weighs a pretrained LS-SVM model

γ RBF kernel parameter

λ Factor that controls the age of the representative particles in the PAC algorithm

ξi SVM slack variables

φ(·) Non-linear function that maps samples to a high dimensional space

Ψ(·) Teager-Kaiser Energy Operator function

ΨSC Bilinear Model of the EMG signal

Ψavg Mean of the conditioned EMG signal

Ψrms RMS of conditioned EMG signal

Acronyms

ADC Analog to Digital Converter

ANN Artificial Neural Networks

ANOVA Analysis of Variance

AR Auto-Regressive

BM Bilinear Models

Cap Capitate bone

CIMT Constraint-Induced Movement Therapy

CVF1 Cross-Validation Fold 1

CVF2 Cross-Validation Fold 2

CVF3 Cross-Validation Fold 3

www.manaraa.com

NOMENCLATURE AND ACRONYMS xvi

CVF4 Cross-Validation Fold 4

CVF5 Cross-Validation Fold 5

DOF Degrees of Freedom

EEG Electroencephalography

EIT Electrical Impedance Tomography

EMG Electromyography

FMG Force Myography

FPGA Field Programmable Gate Arrays

GUI Graphical User Interface

Ham Hamate bone

HC Hand Closed

HMM Hidden Markov Models

HO Hand Open

IMU Inertial Measurement Unit

Itr1 Iteration 1

Itr2 Iteration 2

Itr3 Iteration 3

Itr4 Iteration 4

Itr5 Iteration 5

kNN k Nearest Neighbours

KP Key Pinch

LDA Linear Discriminant Analysis

LS-SVM Least Squares Support Vector Machines

Lun Lunate bone

MAV Mean Absolute Value

MAVS Mean Absolute Value Slope

www.manaraa.com

NOMENCLATURE AND ACRONYMS xvii

MC1 Metacarpal bone 1

MC2 Metacarpal bone 2

MC3 Metacarpal bone 3

MC4 Metacarpal bone 4

MC5 Metacarpal bone 5

MLP Multilayer Perceptron

MMG Mechanomyography

MNF Mean Frequency

MUAP Motor Unit Action Potential

NN Neural Network

PAC Particle Adaptive Classifier

PCA Principal Component Analysis

Pis Pisiform bone

PKF Peak Frequency

PM Predictive Model

PP Precision Pinch

PSD Power Spectrum Density

PSR Power Spectrum Ratio

Rad Radius bone

ReLU Rectified Linear Unit

ROM Range of Motion

RBF Radial-Basis Function

RP Representative Particles

RSNNS R Stuttgart Neural Network Simulator

RSS Representative Sample Set

Sca Scaphoid bone

www.manaraa.com

NOMENCLATURE AND ACRONYMS xviii

sEMG surface Electromyography

SGD Stochastic Gradient Descent

SNR Signal to Noise Ratio

SPSS Statistical Package for Social Sciences

SVD Singular Value Decomposition

SVM Support Vector Machines

TKEO Teager-Kaiser Energy Operator

Tpd Trapezoid bone

Tpm Trapezium bone

Trq Triquetrum bone

UE Upper Extremity

Uln Ulna bone

WAb Wrist Abduction

WAd Wrist Adduction

WE Wrist Extension

WF Wrist Flexion

WL Waveform Length

WP Wrist Pronation

WS Wrist Supination

ZC Zero Crossing

Units

cm Centimetres

Hz Hertz

kg Kilograms

www.manaraa.com

NOMENCLATURE AND ACRONYMS xix

mm Millimetres

ms Milliseconds

s Seconds

yrs Years

◦ Degrees

www.manaraa.com

Chapter 1

Introduction

Cerebrovascular accidents, commonly known as stroke, are the third leading cause of disability

and the second leading cause of death in the world [1]. Up to 80% of stroke survivors often present

upper extremity (UE) hemiparesis [2] thus, requiring extensive rehabilitation sessions to regain

some UE functions. The main inconvenience for hemiparetic stroke patients is that they may not

be eligible for common rehabilitation techniques, which are usually aimed towards a population

with mild impairments [3]. Therefore, alternative therapies are necessary for hemiparetic stroke

patients to improve neuroplasticity, which is the ability of the brain to “rewire” functions associated

with damaged tissue to healthy parts of the brain.

One alternative therapy is bilateral training, which consists of the activation of motor synergies

between limbs, and as explained by Stewart et al.[4]: “voluntary movements of the intact limb

may facilitate voluntary movements in the paretic limb.” Rehabilitation is enhanced because when

symmetrical movements are executed, the motor cortex governing the actions of the healthy limb

is activated, thus increasing the voluntary muscle contractions in the impaired limb. Hence, by

performing bilateral movements, it is possible to promote neuroplasticity [4]. Moreover, bilateral

training has been tackled from different approaches, with robot-assisted therapy being the one

with greatest potential. Even though this innovative field has proven to be effective, much work

needs to be done regarding the interaction with robotic devices during robot-assisted therapies. In

this sense, by improving the patient’s level of engagement during robot-mediated rehabilitation,

such rehabilitation can provide an advantage over traditional rehabilitation therapies [5].

1

www.manaraa.com

1.1 Motivation 2

1.1 Motivation

Recently, it was proven that by using robot-assisted therapy as a complementary method to tra-

ditional rehabilitation techniques, it is possible to achieve significant improvements in the rehabil-

itation outcomes [6]. In the context of upper-limb robot-assisted therapy, wearable mechatronic

devices allow for the rehabilitation of specific groups of muscles by applying different torques at

certain joints of the upper limb [7]. An important aspect of robot-assisted therapy is the need

to promote patient mobility instead of just letting the robot perform the complete rehabilitation

task. Furthermore, it has been found that when the user’s movements are governed by those of the

robot, the amount of effort that the patient exerts while performing voluntary actions is reduced,

leading to negative effects during the recovery process [8]. Consequently, the ideal therapy is one

in which the patient is part of the control loop, which can be achieved by enabling different ways of

communication and interaction between the robotic device and the user [9]. However, even when

research in the field of robot-assisted therapy has increased [6, 7, 10–12], the need for a natural

human machine interface that allows an intuitive control and long-term adoption of this technology

remains [13].

To address this issue, gesture recognition has been studied as a possible solution for human

machine interface applications [14, 15], with gesture recognition based on electromyography (EMG)

being the most commonly used for interactions with robotic devices [16]. In previous years, the Myo

Armband [17], was introduced as a commercially available EMG based gesture recognition device,

opening a lot of possibilities for gesture recognition applications. However, the built-in proprietary

system of the Myo Armband is limited to the recognition of 5 gestures. This limitation may be

because the accuracy of the device is inversely proportional to the amount of gestures it can detect

[18, 19]. Moreover, when the Myo Armband is used in a user-independent scenario, which means

that it can be used by new users without prior training, its recognition accuracy drops from 83.1%

(user-dependent) to 53.7% (user-independent) [20]. This is important because a user-independent

scenario allows for a practical gesture recognition system. Such system can help new users become

proficient in using wearable mechatronic devices during robot-mediated therapies after a short

period of time. By using the system’s previous training data, long training sessions that would

www.manaraa.com

1.2 General Problem Statement 3

otherwise be required to adjust the interface to a specific subject, would not be necessary anymore

[21]. Hence, the time to complete a rehabilitation session for hemiparetic stroke patients would

be reduced. By overcoming these limitations, the Myo Armband, or a similar EMG-based device,

can be used to build a low-cost, reliable interface that can interact with wearable robotic devices.

1.2 General Problem Statement

Commonly, gesture recognition can be achieved by using different pattern recognition algorithms

such as support vector machines (SVM) and linear discriminant analysis (LDA). Furthermore,

the ideal gesture recognition interface should be one that requires training a classifier only once

without the need of retraining every time a new subject wears the device. This is known as user-

independent classification. However, because EMG signals are affected by different factors such as

muscle fatigue and level of health, among others, a user-independent classification is not always

possible without sacrificing classifier accuracy. To overcome this issue, one proposed solution

consists of using sensor fusion techniques, for example combining EMG data with kinematic data

coming from an inertial measurement unit (IMU), to improve the classification accuracy [21, 22].

Another solution is the use of incremental learning, which is a strategy to update the classifiers

by retraining them using new data samples [23]. However, in the specific case of SVM, using

incremental learning may lead to a concept drift, which is the change in the data distribution

over time [24]. Nonetheless, recent studies [23, 25] have proposed solutions for concept drift

during incremental learning by using SVM with particle adaptive classifier (PAC) [23] or SVM in

combination with another classification algorithm, such as k nearest neighbours (kNN) [25].

The purpose of this work is to develop a user-independent hand gesture recognition interface

using sensor fusion techniques and an adaptive incremental learning classifier. This work proposes

that by combining EMG and IMU data from the commercially available Myo Armband, and by us-

ing incremental learning using different classification methods, it is possible to increase the number

of gestures that the Myo Armband can recognize while also improving its detection accuracy.

www.manaraa.com

1.3 Research Objectives and Scope 4

1.3 Research Objectives and Scope

This thesis specifically focuses on identifying and classifying wrist and finger gestures based on

EMG and IMU data collected from the forearm muscles. A database of EMG and kinematic data

was collected from healthy subjects while they performed 10 different wrist and finger gestures.

The primary objectives of this thesis are as follows:

1. To acquire and analyze EMG and IMU data from healthy subjects while they perform dif-

ferent hand gestures.

2. To train different classifiers using EMG data, and EMG and IMU data collected from the

Myo Armband, and then evaluate their classification performance.

1.4 Overview of the Thesis

The structure of this thesis is summarized in the outline below:

Chapter 1 Introduction: This introductory chapter.

Chapter 2 Literature Review: Presents a review of wrist anatomy, wrist rehabilitation,

robot-assisted therapy, human machine interfaces used in robot-assisted ther-

apies, gesture recognition and motion intention detection, EMG and IMU sig-

nal acquisition, processing and analysis, and user-independent classification

methods.

Chapter 3 Data Collection and Processing: Presents the methods used for collecting

EMG and IMU data using the Myo Armband including the data collection

protocol and methods of data processing and analysis.

Chapter 4 Classification Methods: Presents the implementation of four classification

methods aimed towards an user-independent gesture recognition using EMG,

and EMG and IMU data.

Chapter 5 Results and Discussion: Presents the results of the data analysis and explains

their significance.

www.manaraa.com

1.4 Overview of the Thesis 5

Chapter 6 Conclusion and Future Work: Emphasizes the contributions of this work and

provides recommendations for future work.

Appendix A Permissions and Approvals: Includes ethics permission and approval, consent

form and trial form.

Appendix B MATLAB Code: Describes the MATLAB code used for EMG and IMU anal-

ysis.

Appendix C Mathematical Formulations: Describes the mathematical equations used to

solve some of the classification algorithms presented in this work.

Appendix D Python Code: Describes the Python code used for real-time EMG data

streaming, and for classification using the bilinear EMG models.

Appendix E R Code: Describes the R code used for training and testing the MLP networks.

www.manaraa.com

Chapter 2

Literature Review

2.1 Introduction

To provide a knowledge base for the remainder of this thesis, this chapter presents a review of

the literature in the areas of wrist anatomy (Section 2.2), wrist rehabilitation (Section 2.3), robot-

assisted therapy (Section 2.4), motion intention and gesture recognition interfaces (Section 2.5),

user-independent gesture recognition (Section 2.6), EMG pattern recognition (Section 2.7), and

classification methods aimed towards a user-independent classification (Section 2.8). A literature

search was conducted using Google Scholar from September 2017 to July 2019. The keywords used

in the search included combinations of the following: upper limb rehabilitation, EMG features,

EMG+IMU sensor fusion, user-independent classification, and EMG gesture recognition. A total

of 119 references, which include papers and books, were incorporated into the literature review.

2.2 Wrist Anatomy

The wrist is a complex human joint localized between the hand and the forearm. It is comprised of

a collection of bones, which consist of the distal ends of the radius (Rad) and ulna (Uln) bones, 8

carpal bones, which include the scaphoid (Sca), the lunate (Lun), the triquetrum (Trq), the pisiform

(Pis), the trapezoid (Tpd), the trapezium (Tpm), the capitate (Cap), and the hamate (Ham); and

the proximal segments of the 5 metacarpal bones (MC1 to MC5) of the hand (Figure 2.1) [26, 27].

6

www.manaraa.com

2.3 Wrist Rehabilitation 7

Figure 2.1: Anterior (left) and posterior (right) views of the bones in the wrist. Reprinted, with
permission [27].

This complex structure allows the hand to interact with the external environment by adopting

different poses depending on the situation. Furthermore, by involving the radio–ulnar complex of

the forearm, complex movements, such as the rotation of the hand, can be performed [28]. These

sets of motions allow the wrist joint to be represented, in mechanical terms, as a 3 degree-of-freedom

(DOF) system [29].

2.3 Wrist Rehabilitation

Although it is possible for the the hand to achieve different poses thanks to the wrist joint, these

poses are limited to a certain range of motion (ROM) (Table 2.1). However, when people suffer from

a neurological injury such as a stroke, they are prone to experiencing some sort of impairment that

hinders the motor abilities of the wrist joint. This impairment can come in the form of hemiparesis,

which is the partial paralysis of the limbs due to muscle weakness, and can be a limiting factor

during activities of daily living [30]. Therefore, to regain lost motor functions, hemiparetic stroke

patients must undergo a series of rehabilitation treatments in order to promote neuroplasticity,

i.e., the ability of the brain to form new neural connections associated with damaged brain tissue

in healthy parts of the brain [4, 31]. In the following sections, some of the popular therapeutic

techniques used to promote neuroplasticity of the brain are described.

www.manaraa.com

2.3 Wrist Rehabilitation 8

Table 2.1: Average range of motion of the wrist joint for each type of movement [32].

Motion Average ROM

Wrist Flexion 73◦

Wrist Extension 71◦

Wrist Radial Deviation 19◦

Wrist Ulnar Deviation 33◦

Wrist Pronation 71◦

Wrist Suppination 84◦

2.3.1 Constraint-Induced Movement Therapy

Constraint-induced movement therapy (CIMT), also known as unilateral training therapy, is a

common rehabilitation technique used for hemiparetic stroke patients. This therapeutic approach

consists of improving the involvement of the affected limb during activities of daily living by forcing

the movement of the paretic limb while the motions coming from the healthy limb are reduced

or constrained [33, 34]. Although promising, CIMT has the drawback of being aimed only at a

population whose hemiparetic symptoms are not that severe [3]. Also, the constant practice of

CIMT may result in a reduced need for the brain to retain some information related to the motions

being performed, which results in less improvement of neuroplasticity [35].

2.3.2 Bilateral Movement Training

An alternative to CIMT is known as bilateral movement training. This technique consists of

activating motor synergies of the limbs by promoting the coordination of movement between the

paretic and non-paretic limb, thus facilitating voluntary motions on the affected limb [4, 36]. Three

main categories of bilateral training exist, divided according to the type of rehabilitation task they

perform. These categories are the following:

Repetitive reaching practice with the hand fixed: This type of training consists of training

a reaching motion by attaching the distal ends of both hands to a mechanical device. Then, a

reaching movement is trained by performing symmetrical motions (both hands push the device in

the same direction) or assymetrical motions (one hand pushes while the other pulls the device) [37].

www.manaraa.com

2.4 Robot-Assisted Therapy 9

Isolated muscle repetitive task practice: Isolated repetitive muscle training consists of iso-

lating a group of muscles on both arms by restraining all types of motions but one. For example,

patients may be asked to perform repetitive movements of wrist flexion, wrist extension, among

others [37].

Whole arm functional task training: While the previous two tasks required the performing

of a single motion or activity, this training involves a set of motions that include the grasp, reach,

and release of an object. This training can be done by simultaneously using both arms to perform

these three actions or by using the non-paretic limb to guide the impaired limb [37].

2.4 Robot-Assisted Therapy

The previous section described traditional upper limb rehabilitation methods aimed towards im-

proving neuroplasticity. Even though the described therapeutic methods are designed to provide

high intensity training by being repetitive, task-oriented and challenging to the patient, a need to

further enhance the effects of the rehabilitation treatments exists [38]. Therefore, research groups

have come with the solution of using smart robotic devices to address the need of improving the

rehabilitation effects on patients with impaired arm functions after stroke. Robot-assisted therapy

can provide the tools to asses the improvement of motor control of the affected limbs in a much

faster, efficient, and objective way [39].

Usually, upper limb robot-assisted therapy is based on two types of robotic devices: serial

robotic manipulators and wearable mechatronic devices (Figure 2.2). The former is based on the

use of a robotic manipulator, which its end effector is attached to the hand of the patient, and

then it assists the patient by generating forces in order to complete the rehabilitation task.

The second type of therapy robots are known as wearable mechatronic devices. Contrary to end

effector robots, these types of mechatronic devices are designed so that their joints match those of

the user. Moreover, the main advantage of this design is that wearable mechatronic devices allow

for the rehabilitation of specific group of muscles by applying different torques at certain joints of

the upper limb [7].

In order for the wearable mechatronic devices to work properly with the upper limb, it is

www.manaraa.com

2.5 Motion Intention Detection vs. Gesture Recognition 10

(a) (b)

Figure 2.2: Example of robotic devices that can be used during upper limb rehabilitation. The
KUKA robot, a serial robotic manipulator (a), and the WearME Brace [40], a wearable
mechatronic device (b).

necessary to apply effective control strategies, which will dictate not only the mechanical behavior

of the system, but also the human-robot interactions [10]. Table 2.2 shows a summary of the

different control strategies used during robot-assisted therapies.

Among all of the control strategies described in Table 2.2, partially assistive control stands

as the most important because it promotes patient mobility instead of just letting the robot

perform the complete rehabilitation task. Furthermore, it has been discussed that when the user’s

movements are led by those of the robot, the amount of effort the patient puts while performing

voluntary actions is reduced, leading to negative effects during the recovery process [41]. Therefore,

it is important to adopt the concept of user in the loop, in which the patient can interact with

the robotic device in a more natural and active way. Consequently, by adopting a more active

role that promotes self-improvement, hemiparetic stroke patients will feel more comfortable during

robot-assisted therapy sessions [42].

2.5 Motion Intention Detection vs. Gesture Recognition

Different approaches have targeted the “user in the loop” paradigm. Of these, motion intention

detection is the approach that has the potential to give almost full control to the wearer of the

mechatronic device. Motion intention detection works by identifying motion patterns and classi-

www.manaraa.com

2.5 Motion Intention Detection vs. Gesture Recognition 11
T

a
b

le
2.

2:
C

on
tr

ol
m

o
d

al
it

ie
s

u
se

d
d

u
ri

n
g

ro
b

ot
-a

ss
is

te
d

th
er

ap
ie

s
[1

0
,

4
1]

.

M
o
d

a
li

ty
S

u
b

-M
o
d

a
li

ty
F
u

rt
h

e
r

S
u

b
-M

o
d

a
li

ty

A
ss

is
ti

v
e

M
o
d

e
:

T
h
e

ro
b

o
t

p
ro

d
u
ce

s
fo

rc
es

th
at

ar
e

a
p
p
li
ed

to
th

e
im

p
ai

re
d

li
m

b
to

co
m

p
le

te
th

e
ta

sk

P
a
ss

iv
e

C
o
n
tr

o
l:

T
h
e

ro
b

ot
m

ov
es

th
e

im
p
ai

re
d

li
m

b
w

it
h
ou

t
th

e
n
ee

d
fo

r
th

e
p
at

ie
n
t

to
st

ar
t

th
e

a
ct

io
n

P
a
ss

iv
e

T
ra

je
c
to

ry
T

ra
ck

in
g
:

T
h
e

ro
b

ot
fo

ll
ow

s
a

p
re

d
efi

n
ed

p
at

h

P
a
ss

iv
e

M
ir

ro
ri

n
g
:

T
h
e

ro
b

ot
m

im
ic

s
th

e
b

eh
av

io
r

of
th

e
h
ea

lt
h
y

li
m

b
to

sy
n
ch

ro
n
ou

sl
y

d
ra

g
th

e
im

p
ai

re
d

li
m

b
in

a
m

a
st

er
–

sl
av

e
co

n
fi
gu

ra
ti

on

P
a
ss

iv
e

S
tr

e
tc

h
in

g
:

T
h
e

ro
b

ot
p
as

si
v
el

y
st

re
tc

h
es

th
e

jo
in

ts
to

id
en

ti
fy

th
e

an
gl

e-
re

si
st

an
ce

re
la

ti
on

sh
ip

s

T
ri

g
g
e
re

d
P

a
ss

iv
e

C
o
n
tr

o
l:

A
ft

er
th

e
p
at

ie
n
ts

tr
ig

-
g
er

s
th

e
ac

ti
on

,
th

e
ro

b
ot

p
as

si
ve

ly
fo

ll
ow

s
a

p
re

d
efi

n
ed

tr
a

je
ct

or
y

P
a
rt

ia
ll

y
A

ss
is

ti
v
e

C
o
n
tr

o
l:

T
h
e

p
at

ie
n
t

co
n
tr

ol
s

th
e

m
ot

io
n

an
d

th
e

ro
b

ot
su

p
p

or
ts

th
e

p
at

ie
n
t

in
o
rd

er
to

co
m

p
le

te
th

e
ta

sk
on

ly
w

h
en

it
se

n
se

s
a
ss

is
ta

n
ce

is
n
ee

d
ed

Im
p

e
d

a
n

c
e
/
A

d
m

it
ta

n
c
e

C
o
n
tr

o
l:

T
h
e

ro
b

ot
a
ct

s
w

it
h

tw
o

m
o
d
el

-b
as

ed
ap

p
ro

ac
h
es

:
a

fo
rc

e
co

n
tr

ol
le

r
w

it
h

p
os

it
io

n
fe

ed
b
a
ck

(i
m

p
ed

an
ce

)
an

d
a

p
os

it
io

n
co

n
tr

ol
le

r
w

it
h

fo
rc

e
fe

ed
b
a
ck

(a
d
m

it
-

ta
n
ce

).
D

ep
en

d
in

g
on

th
e

d
es

ig
n
,

th
e

ro
b

ot
m

ay
u
se

o
n
e

o
r

th
e

ot
h
er

,
or

a
co

m
b
in

at
io

n
of

b
ot

h

A
tt

ra
c
ti

v
e

F
o
rc

e
F

ie
ld

:
A

n
at

tr
ac

ti
ve

fo
rc

e
fi
el

d
a
ro

u
n
d

th
e

d
es

ti
n
at

io
n

ta
rg

et
p
u
ll
s

th
e

ro
b

ot
’s

en
d

eff
ec

to
r

b
as

ed
o
n

it
s

p
os

i-
ti

on
.

A
ss

is
ti

ve
fo

rc
es

ac
t

on
th

e
ot

h
er

jo
in

ts
of

th
e

ro
b

o
t

b
a
se

d
on

re
fe

re
n
ce

tr
a

je
ct

or
ie

s

M
o
d

e
l-

B
a
se

d
A

ss
is

ta
n

c
e
:

F
or

ce
s

re
q
u
ir

ed
to

m
ai

n
ta

in
a

sp
ec

ifi
c

p
os

e
ar

e
es

ti
m

at
ed

.
T

h
en

a
p
ro

p
or

ti
on

al
co

n
tr

ol
sy

st
em

d
ri

ve
s

th
e

ac
tu

at
or

s
of

th
e

ro
b

ot
w

it
h

on
ly

th
e

n
ec

es
sa

ry
fo

rc
e

to
m

ai
n
ta

in
th

e
p

os
e

O
ffl

in
e

A
d

a
p

ti
v
e

C
o
n
tr

o
l:

T
h
is

ty
p

e
of

co
n
tr

ol
st

ra
te

g
y

is
an

ad
ap

ta
ti

on
of

a
tr

ia
l-

b
y
-t

ri
al

so
lu

ti
on

.
T

h
e

id
ea

co
n
si

st
s

o
n

tr
a
in

-
in

g
a

fe
ed

fo
rw

ar
d

te
rm

u
si

n
g

th
is

ap
p
ro

ac
h

an
d

th
en

,
ad

d
in

g
it

to
a

P
ID

or
P

D
co

n
tr

ol
le

r
at

th
e

jo
in

t
le

ve
l

C
o
rr

e
c
ti

v
e

M
o
d

e
:

T
h
e

ro
b

o
t

is
on

ly
a
ct

iv
e

w
h
en

th
e

p
at

ie
n
t

is
n
ot

p
er

fo
rm

in
g

th
e

in
te

n
d
ed

m
ot

io
n

in
a

co
rr

ec
t

m
an

n
er

T
u

n
n

e
li

n
g
:

T
h
is

co
rr

ec
ti

ve
m

o
d
e

co
n
si

st
s

on
cr

ea
ti

n
g

v
ir

tu
al

ch
an

n
el

s
in

w
h
ic

h
th

e
p
at

ie
n
ts

m
ov

e.
W

h
en

-
ev

er
th

e
p
at

ie
n
t

m
ov

es
aw

ay
fr

om
th

es
e

ch
an

n
el

s,
th

e
ro

b
ot

d
ri

ve
s

h
im

b
ac

k
in

to
th

em

C
o
o
rd

in
a
ti

o
n

C
o
n
tr

o
l:

T
h
is

ap
p
ro

ac
h

tr
ie

s
to

so
lv

e
th

e
re

fe
re

n
ce

ti
m

e-
d
ep

en
d
en

ce
p
ro

b
le

m
b
y

im
p
le

m
en

t-
in

g
a

co
n
tr

ol
la

w
to

re
gu

la
te

th
e

p
os

it
io

n
an

d
ve

lo
ci

ti
es

of
th

e
jo

in
ts

re
la

ti
ve

to
th

e
ot

h
er

s
(c

o
or

d
in

at
io

n
of

th
e

jo
in

ts
)

R
e
si

st
iv

e
M

o
d

e
:

T
h
e

ro
b

ot
ap

p
li
es

fo
rc

es
in

th
e

op
p

o
si

te
d
ir

ec
ti

o
n

of
th

e
li
m

b
m

ov
em

en
t

www.manaraa.com

2.5 Motion Intention Detection vs. Gesture Recognition 12

fying them into different categories. Whenever the user intends to move a joint, different muscle

fibers corresponding to the muscles of that joint, produce different patterns of contraction and

relaxation. These patterns generate different biological signals that can be detected using different

techniques, such as electroencephalography (EEG), electromyography (EMG), mechanomyography

(MMG) and force myography (FMG). These signals can be used then to predict the user movement

intention and then generate control commands for the wearable mechatronic devices.

Several studies have managed to utilize motion intention detection as a sophisticated control

method. Ryser et al. [43] developed a wearable robotic hand orthosis controlled using motion

intention detection based on EMG signals. The device detected patterns produced by the activation

of different muscles while performing specific hand gestures and then, these patterns were utilized

to control a wrist wearable mechatronic device. Zhang and Harrison [44] created a device that

was able to measure the cross-sectional impedance distribution among the muscles of the wrist

of the subject using the principle of the electrical impedance tomography (EIT). Because of this,

they were able to detect hand gestures with high accuracies. In studies like [45], the detection of

vibrations produced by the muscles also known as mechanomyography, was used to classify the

patterns; whereas in [46] force myography was utilized, which is the detection of the force produced

by the inner exerted pressure of the limb.

However, adopting motion intention detection as a control method narrows the population

of stroke survivors that can benefit from robot-assisted therapy to just a few. This is due to

the presence of involuntary muscular activation during voluntary movements that compromise

the signal classification in the training process of stroke patients [47]. Therefore, it is necessary

to shift to a more reliable approach that can provide an intuitive and straightforward control

method. Gesture recognition has been used as a reliable human machine interface in mobile

devices, as well as with robotic manipulators [14, 15]. Yet, even when gesture recognition can be a

valuable interface for the control of wearable mechatronic devices during robot-assisted therapies,

its potential has not been fully explored.

Nonetheless, recent studies have started to explore the use of different technologies for the

detection of upper limb gestures. For example, Jung et al. [48] designed a wearable device that

was able to detect six gestures of the hand. The device consisted of a bracelet containing several

www.manaraa.com

2.6 User-Indpendent Gesture Recognition 13

air bladders and air pressure sensors that detected the small changes in the shape of the muscles

due to swelling during voluntary actions. The problem with this device was that the presence of

involuntary movements affected the sensor readings, thus decreasing its reliability for the control

of wearable mechatronic devices. Noronha et al. [49] explored the use of eye tracking technology

to control a soft robotic glove, however the problem with this approach was that they were only

able to detect one single gesture, making the overall control system less versatile for activities

of daily living. Another approach for detecting gestures was explored by Zheng et al. [50], who

developed an armband with capacitive sensors. However, their study did not explore environmental

disturbances that occur when the sensing band was used multiple times. Finally, Haroon and Malik

[51] were able to detect gestures by obtaining EMG signals from the forearm of a subject. This

information was then used for the control of a robotic gripper.

2.6 User-Indpendent Gesture Recognition

To effectively use gesture recognition-based interfaces during rehabilitation sessions of hemiparetic

stroke patients, it is necessary to develop strategies aimed towards a user-independent scenario.

In doing so, deployment of robot-assisted therapies would be facilitated by adopting a system that

does not require any type of offline training for each new patient [21, 52].

Although EMG-based gesture recognition shows the potential to be the ideal interface for

human machine interactions due to EMG signals being rich in information about muscle electrical

activity, EMG has a low signal to noise ratio (SNR), and the fact that hemiparetic stroke patients

have limited motor abilities, this type of signals are difficult to use during robot-assisted therapies.

However, when used in combination with other types of sensors, its possible to compensate for

this disadvantage, as shown in several studies [15, 53]. Despite the capabilities of simultaneously

employing information coming from multiple sources, different studies have opted to employ more

sophisticated pattern recognition techniques to enhance the capabilities of the EMG signals, in

order to achieve a user-indepenendent gesture recognition interface. In the following sections,

these EMG pattern recognition techniques will be presented.

www.manaraa.com

2.7 EMG Pattern Recognition 14

2.7 EMG Pattern Recognition

Before explaining the user-independent pattern recognition methods, it is important to understand

how pattern recognition of EMG signals works. In general, development of an EMG-based pattern

recognition system follows the procedure summarized in Figure 2.3 [54, 55].

Data
Acquisition

Data
Segmentation

Feature
Extraction

Training and
Evaluation
of Classifier

Figure 2.3: General procedure of an EMG pattern recognition system.

2.7.1 EMG Data Collection

Electromyography (EMG) is a way to measure the electrical activity produced by the muscles when

they contract. In general, this electrical activity can be acquired using invasive and non-invasive

methods [56]. The first method consists of inserting needle electrodes through the skin and directly

into the muscle. On the other hand, the non-invasive technique consists of using electrodes made

of conductive materials that range from stainless steel to gold or silver metals [57], placed on the

surface of the skin over the muscle of interest. This process of acquiring the EMG signals using

the non-invasive method is also known as surface electromyograpy (sEMG).

Whenever a muscle contracts, each of its muscle fibers produces an action potential, which

when summed together, produce something known as motor unit action potential (MUAP). The

MUAP is responsible for producing currents that flow from the muscle cells to the surface of the

skin. The sum of all MUAPs produce an EMG signal that is read by electrodes placed on the

skin [58]. Once obtained, this EMG signal needs to be preprocessed before proceeding towards the

next steps of the pattern recognition. Given that the EMG signal is in the order of milivolts, the

first preprocessing step consists of amplifying with a gain in the range of 1000 to 10000 [59]. After

being amplified, the EMG signal is then filtered using a bandpass filter, which is usually composed

by a high-pass filter and a low-pass filter. These two filters are designed with cut off frequencies

around 10 to 20 Hz for the high-pass filter, and 500 Hz for the low pass filter [60]. Furthermore, a

notch filter with a cutoff frequency of 60 Hz is also applied to remove the power line interference

www.manaraa.com

2.7 EMG Pattern Recognition 15

that can corrupt the EMG signal.

2.7.2 EMG Data Segmentation

Following the amplification and filtering of the raw EMG signal, the second step of the pattern

recognition process consists of segmenting the preprocessed signal so that it can be analyzed for

real-time applications. However, it is necessary to first detect the moment when the muscle goes

from an idle or relaxed state to the contracted state. This process of detecting the change of state

is known as EMG onset detection and is important because it can be used as the trigger to start

motion analysis.

Typical EMG onset detection methods use threshold-based algorithms. These algorithms in-

clude single-threshold approaches [61], and double-threshold approaches [62–64]. While single-

threshold based approaches rely on detecting the instant when the amplitude of the signal sur-

passes a predefined value, double-threshold approaches take this concept even further by ignoring

false-alarm triggers. This is achieved by counting the number of consecutive samples in which the

amplitude of the EMG signal is above a predefined threshold, after the first motion trigger event

happens.

2.7.2.1 Teager-Kaiser Energy Operator

Solnik et al. [65] showed that regardless of the motion onset detection method used, the detection

accuracy could be improved by using the Teager-Kaiser energy operator (TKEO), which measures

the instantaneous energy change of the signal [66], and is defined as follows:

Ψ (xi) = x2i − (xi+1 × xi−1) , (2.1)

where xi represents the ith EMG sample value.

2.7.2.2 Data Windowing

After preprocessing the EMG signal with TKEO, it can be properly segmented. This is particularly

useful because segmenting the EMG signal allows for the extraction of information from the active

www.manaraa.com

2.7 EMG Pattern Recognition 16

segments of the signal, i.e., segments where the motion is being performed. However, for this

information to be used in real-time applications, segments must be divided into windows, which

may be either continuous or with overlaps. From these windows, features used on the latest

stages of the EMG pattern recognition are extracted. If the system were to work in real time,

the length of the windows should account for the maximum tolerated delay (300 ms) between

processing the information and controlling a myoelectric device [67]. Furthermore, depending on

the application, a trade-off between classification accuracy and delay exists, which can affect the

choice of the window length. In this sense, continuous windows with lengths of 200 ms provide

better classification accuracies, while overlapped windows with lengths above 200 ms, and 150 ms

of overlap, provide a faster response with a noticeable increase in the classification error [68].

2.7.3 Feature Extraction

Following data segmentation, the next pattern recognition step consists of feature extraction. For

the control of EMG-based wearable mechatronic devices, different studies have explored the use

of time domain, frequency domain, and time-frequency domain features for motion classification

[55, 69, 70]. Time domain features are the predominant features used in applications involving

wearable mechatronic devices and most myoelectrical devices. Their popularity comes from their

relatively fast computation due to not requiring any type of transformation [70]. On the other hand,

frequency domain features are mostly used in applications that study muscle fatigue, and are based

on the signal’s estimated power spectrum density (PSD) [54, 70]. Finally, time-frequency domain

features are used to extract the signal’s energy information in time and frequency simultaneously.

However, both frequency and time-frequency domain features require transformations that can be

computationally expensive [54].

2.7.3.1 Time Domain Features

Some of the most commonly used time domain features used in the literature are listed below

[70, 71]:

www.manaraa.com

2.7 EMG Pattern Recognition 17

Mean Absolute Value (MAV) The MAV feature represents the mean absolute value of the

signal amplitude from a segment of window of size m, as follows:

MAV (n) =
1

m

m∑
i=1

|xn (i)| , (2.2)

where xn(i) represents the measure of sample i of channel n.

Waveform Length (WL) This feature represents the cumulative length of the signal over a

time segment [70].

WL =
N−1∑
i=1

|x(i+ 1)− x(i)| , (2.3)

where N is the length of the signal, and x(i) is the ith sample of the signal.

Mean Absolute Value Slope (MAVS) The MAVS feature of each segment n is defined as

the difference between the MAV of the current segment and the next segment for all N segments

[70], as follows:

MAV S(n) = MAV n+1 −MAV n n = 1, . . . , N. (2.4)

Auto-regressive Coefficients (AR) An AR model represents each sample xi of the EMG

signal as the linear combination of each previous xi−p samples and white noise wi [70]. The AR

model is defined as follows:

xi =
P∑

p=1

apxi−p + wi, (2.5)

where P is the AR order and the coefficients ap are used as the EMG features.

Zero Crossing (ZC) This feature represents the number of times the signal crosses the zero

value. To avoid any background noise, a crossing is considered only when the signal exceeds certain

threshold th [70]. The ZC value is computed as follows:

www.manaraa.com

2.7 EMG Pattern Recognition 18

ZC =

N−1∑
i=1

f [x (i) , x (i+ 1)] , (2.6)

where the function f(x, y) is defined as:

f(x, y) =

1 if(x× y) < 0 ∩ |x− y| ≥ th

0 otherwise.

(2.7)

2.7.3.2 Frequency Domain Features

The other type of features extracted during motion classification are the frequency domain features.

Phinyomark et al. [70] found that frequency domain features are not well suited for EMG signal

classification due to some of the features having the same discrimination as most time domain

features. However, they also found that two features in the frequency domain have the ability to

provide some useful information for EMG signal classification. These features are the following:

Mean Frequency (MNF) The mean frequency of the signal is the average frequency of the

EMG power spectrum [70]. It is calculated as follows:

MNF =
M∑
i=1

fiPi

/
M∑
i=1

Pi, (2.8)

where M is the length of the frequency bin, fi is the frequency of the power spectrum at bin i,

and Pi is the EMG power spectrum at frequency bin i.

Power Spectrum Ratio (PSR) The power spectrum ratio represents the ratio between the

maximum value of the EMG power spectrum and the whole energy of the EMG power spectrum

[70]. The PSR is calculated as follows:

PSR =
P0

P
=

f0+n∑
i=f0−n

Pi

/
E2∑

i=E1

Pi, (2.9)

where P is the energy of the EMG power spectrum, which can lie within the range of E1 = 20

Hz and E2 = 500 Hz [72]. On the other hand, P0 is the energy near the maximum value of the

www.manaraa.com

2.7 EMG Pattern Recognition 19

EMG power spectrum, n is the integral limit, and f0 is the frequency with the maximum power

spectrum in a frequency bin of length M [70].

Peak Frequency (PSR) The peak frequency, is the frequency at which the maximum power

occurs [70]. The PKF is given by:

PKF = max(Pi) i = 1, . . . , M. (2.10)

2.7.4 Classification Methods

After features have been extracted, they need to be used as inputs to a classifier in order to be

mapped to new known gestures. This section reviews some of the common pattern recognition

classification methods used for the control of wearable devices.

2.7.4.1 Support Vector Machines

Support Vector Machines (SVM) are a powerful classification method for solving non-linear prob-

lems regarding pattern recognition. SVM uses separating hyperplanes to distinctly classify between

data points corresponding to different classes. To properly classify these data points while also

increasing the probability of correctly classifying new data, SVM tries to find the ideal separating

hyperplane that maximizes the distance between samples of different classes. This distance is also

known as the classification margin, and it is defined by the support vectors, i.e., data that are

closest to the hyperplane. However, because the support vectors are the most difficult data to

classify, the classification margin is tuned to allow for some violations.

Although SVM can be used to solve linear classification problems, most of the applications

involve non-linear classification problems. In other words, the vast majority of pattern recognition

applications involves data samples that are not linearly separable. Therefore, SVM solve this issue

by using kernel functions. These functions allow the data samples to be projected into a high

dimensional space, where data that have some sort of similarity between each other are grouped

together. This allows for a non-linear classification problem to be treated as a linear classification

problem. Commonly used kernel functions include the linear kernel, the polynomial kernel, and

www.manaraa.com

2.7 EMG Pattern Recognition 20

the Gaussian or radial basis function kernel [73].

SVM have been successfully used for many EMG applications including motion classification

for the control of wearable devices [68, 74]

2.7.4.2 Least Squares Support Vector Machines

The Least Squares Support Vector Machines (LS-SVM) classification algorithm proposed by Suykens

and Vandewalle [75] is a variation of the SVM classifier. It was introduced to solve one of the major

drawbacks of SVM, which is the high computational burden of its optimization problem. LS-SVM

solve this issue by approaching the optimization problem using equality instead of inequality con-

straints, and a sum of squared errors [76]. This reformulation allows the solutions of the SVM

classification problem to be obtained using a system of linear equations. Because of this, LS-SVM

constitute the basis algorithm for most user-independent classification problems.

2.7.4.3 Multilayer Perceptron Neural Networks

Previous research in the field of EMG pattern classification [77] has successfully implemented Ar-

tificial Neural Networks (ANN) as a classification algorithm due to its high generalization abilities

over large data sets that are not linearly separable. Multilayer perceptron (MLP) networks are a

type of feedforward network that consists of an input layer, one or multiple hidden layers, and an

output layer (Figure 2.4).

Training of a MLP network occurs through an iterative process that consists of two steps: the

forward propagation phase and the back propagation phase. During the forward phase, information

used as the input signal travels through the network layer by layer in a forward direction. The

output of each layer is given by an activation function, whose choice depends on the application.

Different activation functions exist, however the commonly used one for bilinear problems is the

sigmoid function [78], whereas for multiclass classification problems, the softmax function [79] is

employed. On the other hand, during the back propagation phase, the output of the network

travels from the output layer to the input layer, with the purpose of computing a set of weights

that minimizes the classification error. This is achieved by using different algorithms, with the

backpropagation algorithm being the most commonly used [80].

www.manaraa.com

2.8 User-Independent Classification Methods 21

...

...
...

I1

I2

I3

In

H1

Hn

O1

On

Input
layer

Hidden
layer

Ouput
layer

Figure 2.4: MLP network model for multiple inputs and outputs.

2.8 User-Independent Classification Methods

In the previous section, the process of EMG pattern recognition was described. While the same

process is true for a user-independent EMG pattern recognition, the classification methods used

differ from the traditional ones. In the following sections some of these classification methods are

presented.

2.8.1 Particle Adaptive Classifier

The particle adaptive classifier (PAC) is an adaptive learning classification method based on LS-

SVM, and incremental learning. The concept of incremental learning consists of taking the support

vectors of a pretrained model and combining them with a new batch of incoming data. Then, a

new classification model is trained using these new data. However, this method will eventually

lead to a higher risk of misclassification due to the concept drift, which is caused by the change in

the data distribution every time a new model is trained [24].

Therefore, Huang et al. [23] proposed an alternative to this method that consisted of using a

new type of incremental learning that they called universal incremental learning. This new method

www.manaraa.com

2.8 User-Independent Classification Methods 22

consists of extracting a representative sample set from a pretrained LS-SVM model using clustering

algorithms such as the k nearest neighbours (kNN) [25]. Then, this representative sample set, also

known as the particle set, is used as the new predictive model used to train a new classifier. When

a new data sample is ready to be classified, the universal incremental learning compares how close

this data sample is to any of the samples in the particle set. These distances are measured in the

kernel space. If the distance between the sample and a particle is below a predefined threshold,

the particle set is updated by substituting the sample particle with the new data sample. Finally,

if the particle set was updated, a new predictive model is trained.

The advantage of the PAC method is that it is possible to avoid not only the concept drift,

but also the computational cost of training new predictive models. This is because the size of the

particle set used is small, which yields a reduced number of support vectors.

2.8.2 Adaptive LS-SVM

Another adaptive approach for a user-independent classification scenario is based on the work

proposed by Tomasi et al. [81]. This approach assumes that a database of pretrained LS-SVM

models exists, which can be used as the starting point to train a new predictive model for a new

user. To properly work, the adaptive LS-SVM requires the use of a calibration set, which is formed

whenever a new user performs a defined set of motions. Then, each of the pretrained models in

the database are used to classify the data obtained from the calibration phase. Because the user

performs the same motions used to train the pretrained models, it is assumed that at least the

new distribution of the data is close to at least one of the existing models.

The Adaptive LS-SVM proved to improve the classification performance of new data when used

in a user-independent scenario [81]. However, the main drawback of this method is that it relies

on the assumption that at least one previous model matches the new data distribution, which as

shown in [81], is not always the case.

2.8.3 Bilinear Models

Matsubara et al. [82] proposed a different user-independent classification method that consists

of using bilinear models (BM) to represent the EMG signal. They based their work on a similar

www.manaraa.com

2.8 User-Independent Classification Methods 23

Figure 2.5: Representation of the EMG symmetric model. The EMG signal can be represented
as a multidimensional array where each row K, which represents one EMG channel,
contains the same number of samples.

approach used for computer vision applications [83].

To implement their technique, they represented a multichannel EMG signal (Figure 2.5) using

a symmetric bilinear model, as follows:

ΨSC =

I∑
i=1

J∑
j=1

wijk · zSi · xCj , (2.11)

where ΨSC
k represents the EMG signal of channel k, zS ∈ RI and xC ∈ RJ indicate the parameters,

respectively, of the style (user-dependent factors) and content (motion-dependent factors) vectors.

Also, by denoting W ∈ RI×J as the parameter matrix of the bilinear model with entries wijk, each

channel k of ΨSC can be represented in a vectorized form, as follows:

ΨSC
k = zS

T ·Wk · xC . (2.12)

By using the bilinear model representation, Matsubara et al. [82] were able to effectively classify

motion data using the content variables as a type of new feature inputs for a SVM classification

model. However, they found that this approach is heavily dependent on the setup of the EMG

collecting device. In this sense, if the EMG electrodes were not placed in the exact same location,

the classification performance would drop.

www.manaraa.com

2.9 Conclusion 24

2.9 Conclusion

This chapter reviewed the anatomy of the wrist, and some of the techniques used in its rehabil-

itation following a stroke episode. The different types of robot assistive rehabilitation devices as

well as their control methods were described. Finally, EMG pattern recognition and some of the

user-independent classification algorithms were reviewed. In the following chapter, an IMU and

EMG-based sensor fusion technique used in combination with these user-independent classification

methods will be explored.

www.manaraa.com

Chapter 3

Data Collection and Processing

This chapter describes the procedure for EMG and IMU data collection and processing. The

following sections present a description of the equipment used, the experimental protocol, which

includes participant recruitment and data collection procedures, and signal processing methods

implemented to move forward to the development of a user-independent interface based on different

classification models. The code used in this section is shown in Appendices B.1 and B.2.

3.1 Equipment

3.1.1 The Myo Armband

The Myo Armband (Fig. 3.1), which is a gesture recognition band comprised of eight dry stainless

steel medical grade EMG sensors and one 9 degree-of-freedom (DOF) IMU, was used to collect data

during the trials. Each EMG sensor was sampled at a frequency of 200 Hz, and output an eight-bit

unitless integer value that ranges from -128 to 127 representing the level of activation of the muscle

being sensed. The 9 DOF IMU contains a three-axis accelerometer, a three-axis gyroscope, and a

three-axis magnetometer, each one sampled at a frequency of 50 Hz. Furthermore, six sixteen-bit

analog-to-digital converter (ADC) are used to digitize each axis of the accelerometer and gyroscope

elements of the IMU, while three thirteen-bit ADC are used for the magnetometer outputs [84].

25

www.manaraa.com

3.1 Equipment 26

Figure 3.1: The Myo Armband showing the labels for each sensor. The IMU is located within
Sensor 4.

Figure 3.2: Custom data acquisition software developed. Figures on the left represent the panel
used to establish communication with the Myo Armband (top), and the experimental
setup panel (bottom). The figure on the right shows the data acquisition panel.

www.manaraa.com

3.2 Participant Recruitment 27

3.1.2 Data Analysis Software

Data from the Myo Armband were streamed via Bluetooth 4.0 to a 3.40 GHz Intel CoreTM i7 PC

running Windows 10 with 8 GB memory RAM. To complete the collection of the data, a custom

data acquisition GUI (Fig. 3.2) was developed in MATLAB R2017b using the App Designer toolbox

and the Myo SDK MATLAB Mex Wrapper toolbox [85].

3.2 Participant Recruitment

Trials began following approval from the Human Research Ethics Board at Western University

(Appendix A.1). Participants were recruited via email advertisement over a period of 7 months

from October 2018 to April 2019. Only healthy subjects over the age of 18 years old, with no

previous injuries of the shoulder, elbow or wrist, nor neurological disorders, were considered for

the trials. These exclusion criteria were implemented because musculoskeletal or neurological

disorders in these joints could hinder the ability to perform the gestures at their full range of

motion.

3.3 Experimental Protocol

Following participant consent, data collection began at the Wearable Biomechatronics Laboratory

at Western University. Each participant provided information about their age, dominant hand,

sex, weight, height, waist circumference, wrist circumference, forearm circumference, arm length,

and any information about prior upper-limb injuries. Such information was collected as a standard

procedure because it may account for differences in biological signals that may be useful for future

studies. However, only a portion of this information was employed in this study. Table 3.1 shows

a summary of the participants’ information.

Table 3.1: Summary of participant information.

Sex
Dominant

Hand

Age

(yrs)

Weight (kg) Height (cm)
Wrist

Circumference (cm)

Forearm

Circumference (cm)

18 Male 22 Right
23.70 ± 3.92 71.30 ± 12.13 173.67 ± 10.51 16.42 ± 1.20 26.41 ± 2.81

6 Female 2 Left

www.manaraa.com

3.3 Experimental Protocol 28

3.3.1 Myo Armband Placement

During the trials, each participant wore the Myo Armband on their dominant arm just bellow the

elbow joint (Fig. 3.3). To ensure consistency and avoid further variability in the EMG readings

during the data collection phase, the fourth sensor of the Myo Armband (Fig. 3.1) was positioned

above the Extensor Carpi Ulnaris muscle, which was located using palpation techniques. Therefore

and depending on the dominant arm, each remaining sensor of the Myo Armband was positioned

over the muscles described in Table 3.2, according to [86].

Table 3.2: Myo Armband sensor placement with respect to the forearm muscles depending on hand
dominance [86].

Sensor # Right Arm Muscles Left Arm Muscles

1 Flexor Carpi Ulnaris
Brachioradialis

Flexor Digitorum Superficialis

2

Anconeus Extensor Carpi Radialis Longus

Flexor Carpi Ulnaris
Extensor Carpi Radialis Brevis

Brachioradialis

3 Extensor Digiti Minimi
Extensor Digitorum

Extensor Pollicis Longus

4
Extensor Digitorum Extensor Digitorum

Extensor Carpi Ulnaris Extensor Carpi ulnaris

5
Extensor Digitorum

Extensor Digiti Minimi

Extensor Pollicis Longus

6

Extensor Carpi Radialis Longus Anconeus

Extensor Carpi Radialis Brevis
Flexor Carpi Ulnaris

Brachioradialis

7
Brachioradialis

Flexor Carpi Ulnaris

Flexor Digitorum Superficialis

8 Flexor Carpi Radialis Flexor Carpi Radialis

www.manaraa.com

3.3 Experimental Protocol 29

Figure 3.3: Placement of the Myo Armband on the user’s dominant arm.

3.3.2 Gestures

After the initial setup, participants performed ten hand gestures, which included a set of six wrist

motions and four finger motions (Fig. 3.4). The order of each motion was randomized for each

participant. Prior to the data collection, participants were instructed to perform each gesture

at a moderate and repeatable force level, i.e., there was no restriction on the amount of force

exerted by each participant. For each gesture, ten consecutive repetitions were performed, and

each repetition was held for five seconds with three seconds of resting time between repetitions.

The completion of the ten repetitions of the ten gestures was defined as a trial. Each trial was

performed in four different arm positions (Fig. 3.5) to prevent degradation of the classification

algorithm during the pattern recognition step, since it has been proven that changing the arm

position affects the classification performance [87]. Finally, each trial was video recorded to review

the motions performed by the participant in case any abnormalities in the data were found during

the data analysis.

www.manaraa.com

3.4 Data Processing 30

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.4: Wrist and finger motions that were recorded; a) Wrist Flexion (WF), b) Wrist Exten-
sion (WE), c) Wrist Pronation (WP), d) Wrist Supination (WS), e) Wrist Adduction
(WAd), f) Wrist Abduction (WAb), g) Hand Closed (HC), h) Hand Open (HO), i)
Precision Pinch (PP), j) Key Pinch (KP).

(a) (b) (c) (d)

Figure 3.5: Arm positions used during data acquisition; a) forearm at full extension (0◦), b) fore-
arm flexed at 90◦, c) forearm flexed at 135◦, d) forearm at 90◦ flexion while externally
rotating the shoulder at 50◦.

3.4 Data Processing

Collected EMG data were filtered using a 60 Hz notch filter to remove power line interference,

and a 4th order high-pass Butterworth filter with a cut-off frequency of 20 Hz. Accelerometer and

gyroscope data were filtered using a 4th order Butterworth band-pass filter with cut-off frequencies

of 0.2 Hz and 15 Hz to remove the gross orientation effects [88]. A summary of the data collection

and processing is shown in Figure 3.6.

www.manaraa.com

3.4 Data Processing 31

Differential
Amplifier

Notch
Filter

High-pass
Filter

Band-pass
Filter

ADC
Data

Segmentation

ADC
Data

Segmentation

EMG

IMU

Myo Armband PC

Figure 3.6: Block diagram of the EMG and IMU data collection and processing. EMG and IMU
data collected from the Myo Armband were sent via Bluetooth to a PC running MAT-
LAB. Then, the data were preprocessed before proceeding to the data segmentation
step.

3.4.1 Signal Segmentation

The active region of the gesture, i.e., sections of the EMG and IMU data where the gesture motion

was being performed, was divided into segments using the following procedure. First, the active

area was computed by conditioning each EMG channel with the TKEO using Equation (2.1), and

then passed through a 4th order Butterworth low-pass filter with a 50 Hz cut-off frequency, before

it was finally rectified (Fig. 3.7), to improve the accuracy detection of the motion onset [65].

Then, the average absolute value of all the channels for each sample was computed using

Equation (3.1), resulting in the signal shown in Fig. 3.8a.

Ψavg =
1

n

n∑
i=1

|Ψi (t)| . (3.1)

In this equation, n is the number of channels and Ψi(t) represents the measure of sample t of the

sensor i. Finally, Ψavg was smoothed using Equation (3.2), with a window size W = 60, to obtain

its root mean square Ψrms (Fig. 3.8b).

Ψrms =

√√√√ 1

W

t+W−1∑
j=t

Ψ2
avg (j). (3.2)

The motion onset and offset were obtained from Ψrms using a variation of the double threshold

technique proposed in [89]. The onset threshold was set to 20% of the average of all the peaks (local

www.manaraa.com

3.4 Data Processing 32

Figure 3.7: Sample data set showing a participant’s EMG signals after performing the WF gesture.
The first column contains the EMG signals of channels 1, 3, 5, and 7; the second column
contains the EMG signals of channels 2, 4, 6 and, 8. The EMG signal is represented
in green, and the conditioned EMG signal with TKEO is represented in blue.

(a) (b)

Figure 3.8: Averaged EMG signal (a) and smoothed EMG signal (b) of a WF gesture sample data
set. Motion onset and offset threshold are represented by the red and green lines,
respectively, in (b).

www.manaraa.com

3.4 Data Processing 33

maximas), whose values were above 10% of Ψrms global maxima. Then, the offset threshold was

set to 60% of the onset threshold. These percentages were determined experimentally. Afterwards,

the indices of Ψrms where the onset and offset occurred were taken and matched to every channel

of the EMG (Figure 3.9).

To avoid any false positives due to involuntary motions, data from the active region that was

less than 750 samples (3.75 seconds) was discarded. Furthermore, data longer than 1200 samples

(6 seconds) was truncated to 1000 samples (5 seconds as determined in the experimental protocol)

in case that the smoothed EMG signal failed to cross the offset threshold. In the event that the

double threshold technique failed to detect an active region, it was defined as the area between

samples 800 and 1650, which corresponds to the time frame when the participant was prompted

to perform the gesture. Using this technique, the active region of 72.51% of the data sets was

successfully detected.

To determine the onset and offset of the motion in the IMU data, the accelerometer and

gyroscopic data were upsampled from 50 Hz to 200 Hz using a cubic spline, so that the number of

Figure 3.9: Sample data set showing the active region of each EMG channel after performing the
WF gesture. The first column contains the EMG signal of channels 1, 3, 5, and 7; the
second column contains the EMG signal of channels 2, 4, 6 and, 8. The active region
of each EMG signal is within its corresponding black box.

www.manaraa.com

3.4 Data Processing 34

samples of these data were the same as the EMG data. Then, the previously obtained onset and

offset indices of the EMG were matched to the upsampled data.

Finally, each active segment was divided into overlapping windows of 250 ms with 50% overlap.

This was done following the recommendations of Englehart and Hudgins [71], who stated that the

maximum acceptable controller delay of upper-limb myoelectric devices should be 300 ms.

3.4.2 Feature Extraction

For both sensor modalities, time domain features were extracted from each window due to their

low complexity and the fact that they do not require any transformation into the frequency domain

[70], which reduces any extra computational resources. The following time domain features were

extracted:

� From each EMG channel: MAV, MAVS, WL, 4th order AR and ZC.

� From each axis of the IMU’s accelerometer and gyroscope: MAV and WL.

The result was a vector of 64 features ([4 features + 4 AR coefficients] × 8 channels) for

each window of the EMG data, and a vector of 12 features (2 features × 3 accelerometer axes

+ 2 features × 3 gyroscope axes) for each window of the IMU data. From these feature vectors,

two data sets were developed. The first one was formed by the 64 features extracted from each

window of the EMG data, and the second data set contained all 64 EMG features plus, the 12

extracted from the IMU data. In the case of the second data set, a feature-level fusion approach

was employed by concatenating each feature vector to form a single vector of 76 features. By using

this fusion level, correlated features can be detected better during the feature reduction phase [90].

A summary of the whole data collection process is shown in Figure 3.10.

www.manaraa.com

3.4 Data Processing 35

Figure 3.10: Summary of the data collection process.

3.4.3 Cross-Validation Sets

Before implementing the classification methods, five cross-validation folds were created from 22

participants using a 5-fold cross-validation method. Although data from a total of 24 participants

were collected, data from two participants (Subject 8 and Subject 21) had to be removed due to

an improper execution of the gestures during the data collection phase. This was identified from

the data and confirmed when watching the videos of the trials. Therefore, each cross-validation

fold was randomly formed, as follows:

� Cross-validation Fold 1 (CVF1): Subject 10 (S10), Subject 16 (S16), Subject 17 (S17), and

Subject 18 (S18).

� Cross-validation Fold 2 (CVF2): Subject 13 (S13), Subject 14 (S14), Subject 19 (S19),

Subject 22 (S22), and Subject 23 (S23).

� Cross-validation Fold 3 (CVF3): Subject 4 (S4), Subject 6 (S6), Subject 12 (S12), Subject

20 (S20), and Subject 24 (S24).

www.manaraa.com

3.5 Summary of Data Collection and Processing 36

� Cross-validation Fold 4 (CVF4): Subject 3 (S3), Subject 5 (S5), Subject 7 (S7), and Subject

25 (S25).

� Cross-validation Fold 5 (CVF5): Subject 2 (S2), Subject 9 (S9), Subject 11 (S11), and

Subject 15 (S15).

Then, training and testing of the classification methods occurred, as follows:

� Iteration 1 (Itr1): Trained on CVF2, CVF3, CVF4, and CVF5. Tested on CVF1.

� Iteration 2 (Itr2): Trained on CVF1, CVF3, CVF4, and CVF5. Tested on CVF2.

� Iteration 3 (Itr3): Trained on CVF1, CVF2, CVF4, and CVF5. Tested on CVF3.

� Iteration 4 (Itr4): Trained on CVF1, CVF2, CVF3, and CVF5. Tested on CVF4.

� Iteration 5 (Itr5): Trained on CVF1, CVF2, CVF3, and CVF4. Tested on CVF5.

3.5 Summary of Data Collection and Processing

This chapter described the methods of data collection and processing. An overview of the developed

data collection software was given as well as the methods used for detecting the active region of the

EMG and IMU signals. The methods employed for feature extraction on both sensor modalities,

following signal segmentation, were described. Finally, the cross-validation models created from

the 22 participants were explained. The next chapter will describe the implementation of four

classification methods used to classify the EMG, and EMG and IMU datasets described in this

chapter.

www.manaraa.com

Chapter 4

Classification Methods

This chapter describes the implementation of four classification methods used on the EMG, and

EMG and IMU datasets. The methods used to implement the particle adaptive classifier (PAC),

the Adaptive LS-SVM, the Bilinear Model-based classifier, and the MLP networks classification

methods are described. Furthermore, a description of how each model was evaluated is provided

before moving towards the results and discussion chapter.

4.1 Classification Method: PAC

The first classification method that was explored was the Particle Adaptive Classifier (PAC), which

was proposed by Huang et al. [23], and described in Section 2.8.1. To classify the EMG, and EMG

and IMU datasets obtained in Chapter 3 using this classification method, code was developed in

MATLAB R2017b. This programming code is shown in Appendix B. In the following sections, the

procedure used to implement the PAC classification method during each of the cross-validation

iterations presented in Section 3.4.3, is described.

4.1.1 Feature Normalization and Feature Reduction

Following the feature extraction step described in Section 3.4.2, the features from the EMG, and

EMG and IMU datasets were standardized using the Z normalization, i.e., after normalization,

data had a mean equal to zero and a standard deviation equal to one. Then, these normalized

37

www.manaraa.com

4.1 Classification Method: PAC 38

features were scaled to the range of ±1 so that they had comparable range of values. Finally, these

scaled features were reduced using the principal component analysis (PCA) procedure to speed up

the learning process of the PAC classification method. A total of 17 principal components were

used so that at least 95% of the data’s variance was retained.

4.1.2 Calibration Phase

Once the data of the EMG, and EMG and IMU datasets were reduced using PCA, a calibration

phase was performed. The purpose of this calibration phase was to find a subject in the cross-

validation training set, whose data distribution was similar to that of a subject in the cross-

validation testing set. This calibration phase was implemented as described below.

First, a LS-SVM predictive model (PM) was created for each each subject in the cross-validation

training set (Figure 4.1a). Then, the data of each subject in the cross-validation testing set were

split in two subsets of data: the calibration data Xcal, and the test data Xtest (Figure 4.1b).

The calibration data were formed by two repetitions from each gesture in a random arm position

(twenty motions in total), whereas the test data were formed by the rest of the motions. The

reason for using two repetitions was because adaptive methods, like the PAC, require to be trained

with a small portion of data that includes all gestures [82]. The amount of time required to perform

these repetitions was equivalent to 2.6 minutes, which is less than the 2 hours used to collect all

of the data for each subject.

Furthermore, the test data were set aside so it could be used later during the evaluation of

the PAC classification method, as it was used to represent unseen data. On the other hand, the

calibration data were classified using each of the previously created PM (Figure 4.1c). After finding

the PM that performed best, the data from the subject in the cross-validation training set that

was used to create this PM was selected as the training dataset Xtrain (Figure 4.1d). This training

dataset was then used to build the PM of the subject in the cross-validation testing set, whose data

distribution was similar to that of the subject in the cross-validation training set. The process of

building this PM is described in the next section.

www.manaraa.com

4.1 Classification Method: PAC 39

CV Training dataset

LS-SVM PM
Labels

Data

(a)

Test Labels

Test Data

Calibration Labels

Calibration Data

Labels

Data

CV Testing dataset

(b)

Performance
Calibration Labels

Calibration Data

Prediction

PM2

Performance
Calibration Labels

Calibration Data

Prediction

PM1

...

Performance
Calibration Labels

Calibration Data

Prediction

PMn

Best
PM

(c)

Labels

DataBest
PM Training Labels

Training Data

(d)

Figure 4.1: Summary of the PAC calibration phase. The cross-validation training dataset, and the
cross-validation testing dataset represent the data from a single subject. a) Creating a
PM using the cross-validation training dataset. b) Splitting the cross-validation testing
dataset. c) Finding the best PM using the calibration data. d) Selecting the best PM
dataset as the training data.

www.manaraa.com

4.1 Classification Method: PAC 40

4.1.3 The Representative Sample Set

To create a new PM for a new subject in the cross-validation testing set, a subset of the data

from Xtrain obtained in the previous section, was extracted. This subset of data, known as the

representative sample set (RSS), served two purposes. The first one was to allow for a high

efficiency training of the new PM by reducing its training time, while also keeping a similar

classification performance [23]. The second purpose was to allow the update of the PM during the

adaptive phase of the PAC classification method, in a simple manner.

To build the RSS, each training sample in the training set was divided into groups according

to its labeled class. Then within each group, samples were split into clusters based on the kernel

distance and the K-Medoids clustering algorithm developed in [91]. The kernel distance ([92, 93])

between two samples, xi and xj , is defined as follows:

d(φ(xi), φ(xj)) = ‖φ(xi)− φ(xj)‖ =
√
K(xi, xi) +K(xj , xj)− 2K(xi, xj), (4.1)

where φ(·) represents the non-linear function that maps the samples to a high dimensional Hilbert

space1, and K(·) is the kernel function. To compute the kernel distance, the radial basis function

(RBF) kernel was employed.

K(xi, xj) = exp(−γ‖xi − xj‖2), (4.2)

where γ is the kernel parameter. For this application, a value of γ = 0.5 was used, which was

determined by using the grid search method during the hyperparameter optimization step [94].

This occurred when the PM from the best subject in the cross-validation training set was created

during the calibration phase (Figure 4.1a). From Equation (4.2), Equation (4.1) was simplified as:

d(φ(xi), φ(xj)) =
√

2− 2K(xi, xj). (4.3)

After dividing the training set, p percent of the samples from each cluster, which were obtained

after using the previously mentioned K-Medoids algorithm, were selected as the representative

1The Hilbert space is an infinite dimensional inner product space, in which kernels can be represented as norm-
based distances [92].

www.manaraa.com

4.1 Classification Method: PAC 41

particles (RP) to form the RSS. For this application, a value of 10 and 23 were chosen for the

number of clusters and the percentage p, respectively, following the recommendations in [23].

Finally, a new LS-SVM PM was created using the RSS as the training data, a regularization term2

C = 2 and a RBF with the kernel parameter γ = 0.5. These parameters were obtained after

performing a grid search during the training step of the PM.

4.1.4 The Representative Particles Attractive Zone

Once the new PM and the RSS were created, an attractive zone around the RP had to be defined.

The attractive zone was necessary to decide which RP had to be replaced. This was done to avoid

the SVM concept drift, which is the change in the data distribution over time, that happens on

every adaptive learning classifier. Therefore, the attractive zone of each RP in the RSS was defined

following three principles, as follow:

a) For a new sample xN , the closest RP had the same class label.

b) The distance between the new sample xN and the closest RP was small.

c) If the closest RP to the new sample xN had not been replaced in a certain amount of time,

then the RP was more likely to be replaced.

The above conditions were implemented using the following procedure: First, each sample xN

in Xcal, which was created in Section 4.1.2 (Figure 4.1a), was classified using the PM obtained in

the previous section. Then, the nearest RP was found using the kernel distance function shown in

Equation (4.3), as follows:

idx = argmin{exp(t/λ) ·KDr,c}, (4.4)

where idx is the index of the closest RP to xN , λ is the factor controlling the age of the RP, t

is a vector that contains the age of each RP, and KDr,c is a matrix that contains the distances

of each sample xN (represented by the rows r) to each RP (represented by the columns c) in

the RSS. Finally, if the distance of the sample xN was above a certain threshold dTh, the RP

2The definition of the LS-SVM regularization term C, and its derivation is explained in Appendix C.1.

www.manaraa.com

4.1 Classification Method: PAC 42

in RSS was replaced by xN using the universal incremental learning algorithm developed in [23].

Equation (4.5) was applied to determine if the new sample xN was within the attractive zone

of the nearest RP, using the values of 0.99 and 105 for dTh and λ, respectively, as following the

recommendations in [23].

D = dTh − [exp(tidx/λ) ·KDr,idx]

> 0 replace RPidx with xN

≤ 0 ignore xN .

(4.5)

The subscript idx in Equation (4.5) indicates the index of the variable. Finally, depending on

the results of Equation (4.5), the vector t in the index position idx was increased if the new sample

xN was ignored, or reset to zero if the RP in the index position idx was replaced.

A summary of the general learning process of the PAC classification method presented in this

section, and in the previous one, is shown in Figure 4.2.

LS-SVM
Training Labels

Training Data
PM

RSS Labels

RSS

(a)

Update RSS
Incremental

Learning

Attractive Zone
DecisionCalibration Labels

Calibration Data

Prediction

PM

(b)

Figure 4.2: Learning process of the PAC classification method. a) Creating the RSS, and training
a PM. b) Updating the RSS and the PM using the attractive zone and incremental
learning, respectively. Samples from the calibration data are predicted one at a time.

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 43

4.1.5 PAC Evaluation

After creating a PM for a user in the cross-validation testing set using the PAC classification

method, the classification performance of the PM, obtained after iterating through each sample in

Xcal (Figure 4.2b), was evaluated using the testing data Xtest (Figure 4.3). The PAC classification

method was repeated for each user in the cross-validation testing set, and for each cross-validation

iteration described in Section 3.4.3. Furthermore, a new set of 7 gestures, which was created by

removing the WAd, WAb and the PP gestures EMG, and EMG and IMU data from the datasets,

were also analyzed using the PAC algorithm. This was done to further optimize the classification

algorithm [95] by removing the gestures whose motions were controlled by the same muscles, e.g.,

the Extensor Carpi Radialis Longus and the Extensor Carpi Radialis Brevis controlling both the

Wrist Extension and the Wrist Adduction motions [96]. The results from the analysis of both,

the 10 and 7 gesture sets using the EMG, and EMG and IMU sensor modalities are discussed in

Chapter 5.

Prediction

PM

Test Data

Performance
Test Labels

Figure 4.3: Evaluation of the classification performance of the PAC classification method.

4.2 Classification Method: Adaptive LS-SVM

Following the classification of the EMG, and EMG and IMU datasets using the PAC classification

algorithm, the next classification method explored was the Adaptive LS-SVM. This method, in-

troduced in Section 2.8.2, was first proposed by Tommasi et al. [81] as an approach towards an

EMG user-independent classification scenario. In this work, the Adaptive LS-SVM classification

method was implemented to classify the EMG dataset, and then adapted to classify the EMG and

IMU dataset. To implement the Adaptive LS-SVM, code was developed in MATLAB R2017b.

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 44

This code can be found in Appendix B. The following sections3 describe the procedure used to

implement the Adaptive LS-SVM classification method.

4.2.1 Calibration Phase

Similarly to the PAC classification method, features from the EMG, and the EMG and IMU

datasets were standardized, scaled, and reduced using the same procedure explained in Sec-

tion 4.1.1, before implementing the Adaptive LS-SVM classification model. Then, a calibration

phase was included in which a LS-SVM PM was created for each subject in the cross-validation

training set (Figure 4.4a). Furthermore, the data from each subject in the cross-validation testing

set were split in two subsets of data: the calibration data Xcal, and the test data Xtest. As with

the PAC calibration phase, two repetitions from each gesture in a random arm position were used

to form Xcal. In the same way, all of the remaining gestures, i.e., gestures that were not part of

the calibration set, formed the testing set Xtest (Figure 4.4b). Finally, Xcal was used to find a

new PM model using the Adaptive LS-SVM classification method. On the other hand, Xtest was

set aside so it could be used to asses the classification performance of the Adaptive LS-SVM PM.

The process of implementing the Adaptive LS-SVM to build a PM is explained in the following

sections.

4.2.2 The Leave-One-Out Prediction

To effectively apply the Adaptive LS-SVM classification method, a closed form solution for the

leave-one-out prediction ỸN , which is the prediction of a sample N when removed from a training

set, was implemented. To find the close form solution, the system of linear equations shown in

Equation (4.6), which represents the Adaptive LS-SVM formulation4, was used a starting point,

as follows:

3In the following sections, unless otherwise stated, a matrix is denoted with a capital letter. Further, when
only one subscript is present, it indicates a specific column of the matrix, e.g., Aij represent a matrix A with the
subscripts (i, j) indicating its row and column, respectively. On the other hand Ai is the same matrix A with the
subscript i indicating the ith column.

4A thorough explanation of the mathematical derivations of the Adaptive LS-SVM formulation is given in Ap-
pendix C.2.

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 45

CV Training dataset

LS-SVM PM
Labels

Data

(a)

Test Labels

Test Data

Calibration Labels

Calibration Data

Labels

Data

CV Testing dataset

(b)

Figure 4.4: Summary of the Adaptive LS-SVM calibration phase. The cross-validation training
dataset, and the cross-validation testing dataset represent the data from a single sub-
ject. a) Creating a PM using the cross-validation training dataset. b) Splitting the
cross-validation testing dataset into Xcal and Xtest.

K + I
C

~1

~1T 0

 ·
AT

~bT

 =

Y T − βŶ T

0

 , (4.6)

where ~1 represents a vector5 of 1’s, I is the identity matrix, C is the LS-SVM regularization param-

eter, and K is the kernel matrix with entries Ki,j = K(xi, xj) = 〈φ(xi), φ(xj)〉, being K(xi, xj) the

kernel function. Moreover, the coefficient β represents the scaling factor that weighs a pretrained

PM. Furthermore, the matrices Y, Ŷ , and A ∈ RG×I , and ~b ∈ RG×1. Here, I is the number of

training samples, and G represents the number of motion labels (classes). Each row of the matrix

A, and each element in ~b holds the α’s (the LS-SVM support vectors), and the corresponding bias

term of each G class, respectively. Similarly, Y and Ŷ are the matrices containing the labels of

each sample, and the prediction of each sample using a previous model, respectively, of Xcal. Each

column of Y and Ŷ represents a vector with all of the elements equal to -1 except for the gth

element, which is equal to 1 and indicates the corresponding class and the predicted class label,

respectively, of sample i in Xcal.

Denoting the first matrix to the left in Equation (4.6) as M , A and ~b were obtained as follows:

5In this work, unless otherwise stated, a vector is defined as a column vector.

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 46

AT

~bT

 = P ·

Y T − βŶ T

0

 . (4.7)

Afterward, the matrix P , which is the inverse of the matrix M , was efficiently computed using

the Cholesky factorization [97] and the inverse matrix block lemma using the procedure described

bellow.

First, the matrix M was divided into four submatrices, as follows:

M =

MA MB

MC MD

 , (4.8)

where the matrices MA, MB, MC , and MD are defined as follows:

MA =

[
K +

I
C

]
(4.9)

MB =
[
~1
]

(4.10)

MC =
[
~1T
]

(4.11)

MD = 0. (4.12)

Then, matrix MA was computed using Xcal with a regularization term C = 2, and a RBF

kernel with parameter γ = 0.5, being used to form the kernel matrix K. These parameters were

the same ones used to train the PMs during the calibration phase described in section Section 4.2.1.

Furthermore, given that the matrix MA was positive definite, i.e., it was a symmetric matrix with

all its eigenvalues being positive, the Cholesky method was used to factorize the matrix into a

lower triangular matrix L that satisfied the following equation:

MA = L · LT . (4.13)

Matrix L was then used to efficiently compute the inverse of matrix MA using Equation (4.14):

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 47

M−1A = L−T · L−1, (4.14)

where L−T is the transpose of the inverse of matrix L. Using M−1A , matrix P was then given by

the following equation:

P =

M−1A +M−1A ·MB · S−1MA
·MC ·M−1A −M−1A ·MB · S−1MA

S−1MA
·MC ·M−1A S−1MA

 , (4.15)

where SMA
= −MC · M−1A · MB is the Schur complement of MA. Finally, following the same

procedure as in [98], and noting that the order in which the training samples are presented in

Equation (4.6), does not affect the prediction outcomes, the closed form solution for the leave-

one-out prediction Ỹi on sample i when removed from the training set was given by the following

equation:

Ỹi = Yi −
Ai

Pii
. (4.16)

Having A = A′ − βA′′, the leave-one-out prediction was then represented as follows:

Ỹi = Yi −
A′i
Pii

+ β
A′′i
Pii

. (4.17)

4.2.3 Adaptive LS-SVM From Multiple Subjects

Having found the closed form of the leave-one-out prediction shown in Equation (4.17), it was

then modified to discriminate between G classes while also including information from previous K

models, as follows:

Ỹi = Yi −
A′i
Pii

+
K∑
k=1

~β(k)
A
′′(k)
i

Pii
∀k = 1, . . . ,K, (4.18)

where ~β was the vector containing all parameters β from previous K models, and A′ and A′′(k)

were given by the equations:

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 48

[A′, b′] = [Y, 0] · P T (4.19)

[A′′(k), b′′(k)] = [Ŷ (k), 0] · P T . (4.20)

To find the optimal parameters of ~β, Equation (4.21) [81] was used, as follows:

min
~β

N∑
i=1

`(Yi, Ỹi)

s.t. ‖~β‖ ≤ 1,

~β(k) ≥ 0 k = 1, . . . ,K,

(4.21)

where `(·) is the convex multiclass loss function [81] defined as the following:

`(Yi, Ỹi) = max{1− Ỹg,i + max
g∗ 6=g
{Ỹg∗,i}, 0} ∀i = 1, . . . , N, (4.22)

where Ỹ was computed using Equation (4.18), and Y is the matrix that contains all of the label

samples of the calibration set. Moreover, the subscript g indicates the row where the matrix Y is

equal to 1. The loss of Equation (4.22) is equal to zero when the confidence value of the predicted

class of sample i is greater than at least 1 over the confidence value assigned to the rest of the

classes for the same sample.

The optimization problem in Equation (4.21) was solved using a projected sub-gradient descent

algorithm as in [81]. To do so, the matrices A′ and A′′(k) were computed using Equations (4.19)

and (4.20) respectively. Convergence was achieved when the norm of Equation (4.22) in the current

update iteration was less than at least 0.05 over its norm in the previous update iteration.

Having found the optimal values of ~β, the parameter A in Equation (4.6) was found using

matrices A′ and A′′ in the following equation:

A = A′ −
K∑
k=1

~β(k) ·A′′(k). (4.23)

Finally, using the matrix A, and the bias term b′ from Equation (4.19), the prediction Ytest on

www.manaraa.com

4.2 Classification Method: Adaptive LS-SVM 49

Adapted
PM

Calibration Labels

Calibration Data

Prediction

PMk

Calibration Labels

Calibration Data

Prediction

PM2

Calibration Labels

Calibration Data

Prediction

PM1

βk

β1

...

β2

Projected Sub-gradient
Descent Optimization

Loop

(a)

Prediction

Test Data

Performance
Test Labels

Adapted
PM

(b)

Figure 4.5: Learning process of the Adaptive LS-SVM classification method. a) Optimization of
the parameters β during each iteration of the projected sub-gradient descent loop.
b) Evaluation of the classification performance of the Adaptive LS-SVM classification
method on the test data.

a new sample i from the testing set was computed using a one-vs.-all approach as follows:

Ytest = argmax{wtest + b′}, (4.24)

where wtest was given by the following equation:

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 50

wtest = A · [K(Xcal, Xtest)]
T , (4.25)

being K(·) the RBF kernel function between the calibration set and the new sample from the testing

set. Here, a value for parameter γ of 0.5 was used. A summary of the training and evaluation

process of the Adaptive LS-SVM classification method is given in Figure 4.5.

4.2.4 Adaptive LS-SVM Evaluation

Similar to the PAC classification method, the classification performance of the Adaptive LS-SVM

was evaluated for each user in the cross-validation testing set during each of the cross-validation

iterations described in Section 3.4.3. Furthermore, the same subset of 7 gestures from Section 4.1.5

was used to evaluate this method. The results of these analyses are discussed in Chapter 5.

4.3 Classification Method: Bilinear Model-based Classification

After evaluation the Adaptive LS-SVM, the third classification method explored was the bilinear

model-based classification method. This method, which was described in Section 2.8.3, was pro-

posed by Matsubara et al. [82] to represent EMG signals in the form of bilinear models. Then,

the bilinear EMG model was classified using conventional classification algorithms. In this work,

this concept was further expanded to be applied to a dataset composed of EMG and IMU signals.

The implementation of this approach is presented in the following sections.

4.3.1 Bilinear Model-based Classification: Datasets

To properly build a user-independent classification model based on bilinear models, data acquired

from both sensor modalities (EMG and IMU) had to be extracted from a fixed active region. This

was done so that each motion class G had the same number of samples N to comply with the

symmetric model in Equation (2.11). To do so, the indices of the onset and offset of the motion

were manually selected for the EMG signal. Then, following a similar procedure as in Section 3.4.1

the onset and offset of the motion for the IMU’s accelerometer and gyroscope were determined.

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 51

Finally, features were calculated from these active regions using the same procedure described in

Chapter 3.

4.3.2 Bilinear Model Learning

Using the datasets obtained in the previous section, a bilinear model of each EMG signal of

each subject in the cross-validation training sets (Section 3.4.3) was created using the procedure

described bellow.

First, the EMG data from each subject in the cross-validation training set were divided into

style6 (S) and content (C) variables [82], which represented the user-dependent factors and the

motion dependent factors respectively. To do so, the symmetric K-dimensional EMG signal model

in Equation (2.12) was stacked into a single FK × C matrix, so that standard matrix operations

could be applied, as in Equation (4.26):

Ȳ S =

F 1
1

...

FK
1

F 1
2

...

FK
x

, (4.26)

where Ȳ S represents the symmetric model of the EMG signal of a subject (style variable), and FK
x

indicates the feature x computed for channel K. Further, FK
x was given by the following equation:

FK
x =

[
C1
1 . . . C1

N C2
1 . . . CG

N

]
, (4.27)

where C ∈ R1×NG, with N being the number of samples in motion G. By repeating this procedure

for each subject in the cross-validation training set, a matrix Ȳ was constructed by stacking each

matrix Ȳ S on top of each other, as follows:

6In this work, the decision of using the word style instead of the word subject, was to follow the naming convention
of the bilinear models presented in [83].

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 52

Ȳ =

Ȳ 1

Ȳ 2

...

Ȳ S

. (4.28)

Here, Ȳ ∈ RFS×C . Moreover, the weight matrix W in Equation (2.12) was defined as the

stacked FI × J matrix (Equation (4.29)) consisting on the K-dimensional weights wij from Equa-

tion (2.11), with each dimension K containing F number of features.

W =

w1,1 . . . w1,J

...
. . .

...

wI,1 . . . wI,J

 . (4.29)

With these definitions, Equation (2.12) was rewritten into two equivalent matrix forms [83]:

Ȳ =
[
W V T · Z

]V T ·X, (4.30)

Ȳ V T = [W ·X]V T · Z, (4.31)

where Z ∈ RI×S and X ∈ RJ×C are the matrices containing the style, and content parameter

vectors respectively. Furthermore, {·}V T indicates the vector transpose [83], defined as:

a
b

g
h

c
d

i
j

e
f

k
l

V T

=

a
b

c
d

e
f

g
h

i
j

k
l

. (4.32)

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 53

Finally, using Equations (4.30) and (4.31), Z and X were iteratively derived using the steps

described in [83], using I = 2 and J = 3 as recommended in [82]. Having found the optimal

values for the content matrix X, a pairwise dataset
{
X(c), l(c)

}
was created, where l(c) indicates

the motion label g = 1 . . . G of the corresponding column X(c). This pairwise dataset was then

used to train a NN model, which was created by using the TensorFlow [99] library for Python

[100].

The NN architecture consisted of the input layer, two hidden layers, and the output layer.

Moreover, the two hidden layers consisted of 50, and 20 nodes respectively. After each hidden layer,

a dropout regularization layer, with a dropout rate of 20%, was included to prevent overfitting

[101]. Furthermore, a batch normalization layer was added after the first dropout layer to reduce

the covariance shift, i.e., change in distribution of the layer’s input data during training [102]. To

compute the outputs of each hidden layer, a rectified linear unit (ReLU) activation function was

used. Similarly, a “softmax” activation function was used to compute the output of the output

layer.

Before training the NN, each row of the content matrix X was standardized to have a mean

of 0 and a standard deviation equal to 1. Then, the NN model was finally trained over 300

iterations with an Adam optimizer. This optimizer was configured to have a learning rate of 0.001,

and a decay value of 1e−6 to speed the learning process. These parameters were determined

experimentally. A summary of the NN structure is shown in Figure 4.6.

D
ro
p
o
u
t

Activation

Function

Softmax

Activation

Function

ReLU
.
.
.

1

2

20B
a
tc
h
N
o
rm

a
li
za

ti
o
n

D
ro
p
o
u
t

.

.

.

1

2

50

In
p
u
t
L
a
y
er

Activation

Function

ReLU

O
u
tp

u
t
L
a
y
er

Prediction

Figure 4.6: Architecture of the NN used to train the bilinear model-based classifier. The hidden
layer is represented by the bar with numbered circles inside. Each numbered circle
represents a node of the hidden layer.

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 54

Labels

EMG Data

Content Matrix (X)

Style Matrix (Z)

Weight Matrix (W)

PM

Subject 1

Subject 2
Labels

EMG Data

Subject n
Labels

EMG Data

...
Bilinear Model

Learning

(a)

PM

Weight Matrix (W)

Style Matrix (Z)

Content Matrix (X)...
Subject n

Labels

EMG Data

Subject 2
Labels

EMG Data

Subject 1
Labels

EMG Data

Labels

IMU Data

Labels

IMU Data

Labels

IMU Data

Labels

Averaged IMU Data

Bilinear Model
Learning

...
Subject n

Subject 2

Subject 1

(b)

Figure 4.7: Bilinear model learning process. The PM represents a NN model trained using the
content matrix X. a) Learning a bilinear EMG model. b) Fusing the content matrix X
with the averaged IMU features.

www.manaraa.com

4.3 Classification Method: Bilinear Model-based Classification 55

In order to explore the effects of the IMU for classifying gestures using the bilinear models, the

content matrix X, was fused with the IMU features obtained in Section 3.4.2. However, because

these features belonged to multiple users, the average of these features across all subjects in the

cross-validation training set was employed (e.g., the WL feature computed for the acceleration

data in the x direction was averaged across all subjects). Then, a different NN model was trained

using this information and the same parameters used for the EMG NN model. A summary of the

process described in this section, and in Section 4.3.1 is shown in Figure 4.7.

4.3.3 Calibration Phase

Similarly to the previously evaluated classification models, the bilinear model-based classification

method required the use of a calibration phase. However, the main difference was that this cal-

ibration phase required a calibration set formed only by one repetition of only one motion. The

reason behind this was because only one motion is required to estimate the style matrix Z of a

new user. Therefore, for each user in the cross-validation testing set, one random repetition of the

wrist flexion gesture in a random arm position was used to calibrate the bilinear model. Then,

using the content variables, which were computed in Section 4.3.2, for the wrist flexion gesture,

the subject user-dependent factors Zn were computed using Equation (4.33):

Zn =
[[
W ·Xg

]V T
]+
· Ȳ V T

g , (4.33)

where {·}+ indicates the Moore–Penrose pseudoinverse matrix, and Xg and Ȳg represent, respec-

tively, the content variables and the new input data of motion g used to calibrate the model.

Finally, using the new style content variable Zn, the content variables Xn for new observations

Ȳn of motion n were obtained using Equation (4.34):

Xn =
[[
W V T · Zn

]V T
]+
· Ȳn. (4.34)

www.manaraa.com

4.4 Classification Method: MLP Neural Networks 56

4.3.4 Bilinear Model Evaluation

As with the previous classification methods, the bilinear model-based classification method using

NN was applied to the 10 gesture dataset from Section 3.3.2 to observe its performance. To

do so, programming code was implemented in Python 3.6 (Appendix D). Moreover, this same

classification method was equally applied to the 7 gesture dataset created in Section 4.1.5. The

steps described in this section were used to condition the data from the EMG, and the EMG and

IMU datasets from the 7 gestures. The results of this analysis are described in Chapter 5.

4.4 Classification Method: MLP Neural Networks

The final classification method implemented was based on MLP networks, which were described in

Section 2.7.4.3. Here, the EMG, and EMG and IMU datasets obtained from the Myo Armband in

Chapter 3 were used to train the MLP network. Further, to observe the effects in the classification

outcomes, the results from the classifier using EMG data only were compared against the results

obtained from the classifier using a combination of both EMG and IMU data.

4.4.1 MLP Dataset

The MLP networks datasets consisted of both the EMG, and EMG and IMU datasets obtained

in Chapter 3. For each cross-validation iteration in Section 3.4.3, each subject’s EMG data in the

training set were combined into a single dataset in order to be trained using the MLP networks,

as shown in Figure 4.8. This procedure was repeated for the combined EMG and IMU dataset for

further comparison.

4.4.2 MLP Learning

For this application, a stochastic gradient descent (SGD) learning algorithm was employed during

the backpropagation step. Using this learning method, which is also known as online learning

[103], the weights of the network were updated for each training sample after each epoch, i.e., for

each individual training sample, its weight was updated after a full forward–backward propagation

www.manaraa.com

4.4 Classification Method: MLP Neural Networks 57

Labels

Data

Labels

Data

Labels

Data

CV Labels

CV Data
Labels

Data

Training Data

Training Labels

Subject 1

Subject 2

Subject n

...

80%

20%

CV Training dataset

Figure 4.8: Procedure used to create the MLP dataset. Data from each subject in the cross-
validation training set were combined, and then split in two data subsets: the training
data, and the cross-validation data.

phase. Further, the MLP network was trained in RStudio [104] with the RSNNS package [105]

software (Appendix E) following the procedure described below.

First, the data, and the data labels were standardized to have a mean of 0 and a standard

deviation equal to 1. Moreover, the mean and standard deviation parameters were saved to

reconstruct the original labels after training the network. Then, the original data were split into

two sub-datasets, the training and cross-validation set, each one formed of 80% and 20% of the

original data, respectively Figure 4.8. To determine the architecture of the MLP network, as well

as the learning parameters, the cross-validation set was used to observe the efficiency of the model

for classifying 10 gestures. The choice of implementing a cross-validation set was to evaluate the

neural network model on its ability to generalize to an unseen dataset. By doing so, it was possible

to keep a low bias, which is the model’s ability to obtain an output closer to the ground truth

label with small errors, and a reasonable high variance. Moreover, the cross-validation set allows

for an optimal bias-variance tradeoff, thus preventing an overfitted model [106]. Figure 4.9 shows

a summary of this procedure.

Having found the PM that performed best in the cross-validation set, the MLP network was

created using an architecture that consisted of the input layer, three hidden layers, and the output

www.manaraa.com

4.4 Classification Method: MLP Neural Networks 58

PMMLP
Training Labels

Training Data

(a)

Prediction

PM

CV Data

CV Labels
Performance

(b)

Figure 4.9: MLP network learning. a) Training a PM using MLP networks. b) Testing the PM on
the cross-validation data. The steps in a), and b) were repeated until the PM achieved
a high classification performance on the cross-validation dataset.

layer. The three hidden layers contained 300, 200, and 100 nodes, respectively. Training of the

network took an average of 4 hours. This architecture is shown in Figure 4.10.

Activation

Function

Linear

Activation

Function

Logistic

In
p
u
t
L
a
y
er

.

.

.

1

2

200

.

.

.

1

2

300

.

.

.

1

2

100Activation

Function

Logistic

Activation

Function

Logistic

O
u
tp

u
t
L
a
y
er

Prediction

Figure 4.10: Architecture of the MLP network. The hidden layer is represented by the bar with
numbered circles inside. Each numbered circle represent a node of the hidden layer.

Table 4.1 show the parameters used as the input for the RSNNS MLP function. Here the

“initFunction”, is the initialization function that randomized the networks weights in a range of

values between −3 and 3. This was done to break symmetry of the network, i.e., each neuron in

the network was updated with a different value, thus allowing for a better accuracy of the training

model. Furthermore, the “learnFunc” parameter, which stands for learning function, allowed the

network to be trained using the SGD learning algorithm as explained before. Here, the learning

rate of the gradient algorithm was set to 0.2. Finally, the update function “Topological Order”

computed the outputs of the units during the forward propagation phase in a topological order,

i.e., starting with the input layer, the network computed the output of each unit before moving

www.manaraa.com

4.4 Classification Method: MLP Neural Networks 59

on to the next layer.

Table 4.1: RSNNS MLP network parameters.

Name Value Parameters

initFunc “Randomize Weights” -0.3, 0.3

learnFunc “BackpropMomentum” 0.2, 0

updateFunc “Topological Order” 0

For this application, a logistic activation function, was employed for the input and the three

hidden layers, whereas for the output layer, the identity or linear function was utilized, i.e., the

output value of the output layer was equal to the output of the previous layer (Figure 4.10). The

choice of a linear function in the output layer was due to the label values not being integer numbers.

Furthermore, the use of this linear activation function allowed for the output layer to have 1 node

only. Finally, the output of the network was unscaled using the previously obtained mean and

standard deviation parameters from the training set. However, because the values of the unscaled

labels were not integer numbers, a function was employed to round them to the nearest integer so

that they lay within the range 1 ≤ output label ≤ 10.

4.4.3 MLP Network Evaluation

Once the MLP network finished training using the best network parameters, it was tested in the 10

gesture dataset from Section 3.3.2 to observe its performance. Moreover, this same classification

method was equally applied to the 7 gesture dataset created in Section 4.1.5. To do so, the steps

described in this section were used to condition the data from the EMG, and the EMG and IMU

datasets from the 7 gestures. The results of this analysis are described in Chapter 5.

www.manaraa.com

Chapter 5

Results and Discussion

This chapter describes the results of the four classification methods described in Sections 4.1

to 4.4 when applied in a user-independent scenario. First, each classification method was utilized

to classify data from the 10 gestures described in Section 3.3.2. These data were obtained using

two different sensor modalities: EMG, and EMG and IMU. Furthermore, this methodology was

applied to an optimized gesture set that was created by removing the sensor data from gestures for

which their motion was controlled by the same group of muscles, i.e., gestures showing the same

motion patterns because their EMG signals were generated from the same muscles, as indicated

in Section 4.1.5.

Since one of the preliminary goals indicated in Section 1.3 was to observe the efficacy of the

Myo Armband when classifying gestures using the information of the IMU, a statistical analysis

was performed on the classified data to compare the performance of the two sensor modalities in

each of the classification methods. Finally, the results from the best sensor modality from each

classification method were also compared against each other to determine which of the classification

method works best for the Myo Armband during a user-independent gesture classification scenario.

5.1 PAC Classification

This section describes the classification results of the datasets of 10 and 7 gestures using the PAC

classification algorithm described in Section 4.1. For each gesture dataset, features extracted from

60

www.manaraa.com

5.1 PAC Classification 61

the EMG were classified first using this method. Then, the IMU features were combined with the

EMG feature sets for further classification.

5.1.1 PAC: 10 Gesture Classification

As mentioned in Chapter 4, for each cross-validation iteration described in Section 3.4.3, a LS-

SVM model was created for each subject in the cross-validation training set. Then, each subject

in the cross-validation testing set was tested using the PAC classification method. This procedure

was repeated for both the EMG, and the EMG and IMU datasets.

Classification results from each cross-validation iteration defined in Section 3.4.3 using the PAC

classification method are presented in Table 5.1. Further, Figure 5.1 shows the confusion matrices

for the twenty-two testing subjects when classifying the 10 gestures in a user-independent scenario

using EMG data only (Figure 5.1a), and a combination of EMG and IMU data (Figure 5.1b).

Each column of each confusion matrix represents the instances in a predicted class, while each

row represents the instances in an actual class. For EMG data only, classification accuracies using

the PAC classification algorithm ranged from 18.37–50.41% with a mean classification accuracy

of 33.11%(±8.88%), whereas for the combined EMG and IMU sensor modality, accuracies ranged

from 12.49–44.29% with a mean accuracy of 29.98%(±8.81).

For each gesture, the precision and recall scores were also calculated. The former evaluates

the performance of the model on the positive class or, in other words, it highlights the ability

of the classification model to return only relevant data, i.e., it shows which classified gestures

actually belong to a specific class. On the other hand, the recall value represents the rate of the

true positives (the correctly classified samples) of a specific class when compared against the false

negatives, which are the samples that were incorrectly classified as a different class. Therefore,

the precision and recall scores for each classified gesture using EMG data only, and EMG and

IMU data combined, were calculated from the confusion matrix in Figure 5.1a, and in Figure 5.1b,

respectively.

www.manaraa.com

5.1 PAC Classification 62

Table 5.1: Classification accuracies of 10 gestures for each cross-validation iteration set using the
PAC classification method. The best classification result for each subject within each
cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 36.40 39.50

S16 18.41 21.76

S17 50.41 39.32

S18 44.15 24.49

CVF1, CVF3,

CVF4, CVF5

S13 31.03 33.25

S14 42.23 27.90

S19 35.86 29.66

S22 31.59 30.31

S23 45.48 41.51

CVF1, CVF2,

CVF4, CVF5

S4 43.07 44.29

S6 32.87 37.85

S12 28.20 21.70

S20 36.97 29.11

S24 18.37 12.49

CVF1, CVF2,

CVF3, CVF5

S3 36.53 29.86

S5 34.30 39.35

S7 23.67 30.21

S25 33.26 21.93

CVF1, CVF2,

CVF3, CVF4

S2 35.02 41.44

S9 26.81 22.35

S11 23.83 15.65

S15 20.02 25.76

www.manaraa.com

5.1 PAC Classification 63

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

21223

740

1707

925

1565

3987

4125

2078

353

775

516

17675

1465

1068

4463

2550

1830

3739

2809

1391

2921

1269

6613

3403

3748

1707

1936

2980

2592

3283

1297

676

3780

9523

1816

3447

1279

2366

3108

4685

745

2656

4181

2035

8021

836

1548

1815

2335

2205

1711

2268

1417

3484

1062

11187

3291

5828

1610

1918

3347

1675

3490

1066

1978

2207

11229

3125

2066

1924

583

1933

2505

1196

719

2822

4974

7042

2800

2323

448

4125

2627

3731

4117

2193

1476

2572

8197

4493

868

1048

4910

5075

4133

2749

2468

2711

5545

8967

63.1%

51.9%

20.2%

30.2%

25.4%

33.2%

32.9%

20.6%

26.1%

28.1%

36.9%

48.1%

79.8%

69.8%

74.6%

66.8%

67.1%

79.4%

73.9%

71.9%

56.6%

43.4%

47.1%

52.9%

21.7%

78.3%

29.8%

70.2%

30.4%

69.6%

33.1%

66.9%

35.0%

65.0%

26.2%

73.8%

24.1%

75.9%

23.3%

76.7%

(a)

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

20315

2172

1589

1274

619

4835

5457

2273

873

1376

2072

12081

1692

1227

5801

1039

1285

1435

2646

1719

2881

794

8469

3734

4117

1994

2952

1522

1982

3310

1856

1193

2966

6608

2265

3929

1369

2089

3158

4029

1015

3820

5036

1908

7563

1503

1356

1633

2548

2714

1808

1571

1844

5226

1599

9708

2080

5596

1829

1895

1189

3469

2538

1792

1352

2141

12278

6271

2143

1395

1288

4279

2505

2375

1160

4014

4114

8506

3154

2444

422

3386

3182

3404

3809

1631

1702

2601

5650

5165

813

1300

2874

3958

3337

2891

1563

2330

7432

7917

60.4%

35.5%

25.9%

21.0%

23.9%

28.8%

35.9%

24.8%

18.0%

24.8%

39.6%

64.5%

74.1%

79.0%

76.1%

71.2%

64.1%

75.2%

82.0%

75.2%

49.8%

50.2%

39.0%

61.0%

26.7%

73.3%

22.4%

77.6%

26.0%

74.0%

29.3%

70.7%

35.5%

64.5%

25.1%

74.9%

18.3%

81.7%

23.0%

77.0%

(b)

Figure 5.1: PAC confusion matrix of the 10 gestures collected using EMG data only (a), and
EMG and IMU data (b) from all testing subjects. The last two rows of each confusion
matrix represent the precision score percentages and the false positive rate percentages
(the cumulative number of false positives) of each class, in the top and bottom row,
respectively. Similarly, the last two columns represent the recall score percentages and
the false negative rate percentages (the cumulative number of false negatives) of each
class, in the left and right column, respectively.

www.manaraa.com

5.1 PAC Classification 64

For all of the gestures, the lowest precision score among the twenty-two subjects when using

EMG data only, was for the Wrist Pronation gesture with an overall precision of 21.7%, and the

highest precision was for the Wrist Flexion gesture with an overall precision of 56.6%. On the

other hand, the lowest recall scores were for the Wrist Pronation and the Hand Open gestures

with overall scores of 20.2% and 20.6%, respectively. The highest recall score was for the Wrist

Flexion gesture with an overall score of 63.1%. Furthermore, the lowest precision score among

the twenty-two subjects when using both modalities was for the Precision Pinch gesture with an

overall precision of 18.3%, and the highest precision score was for the Wrist Flexion gesture with

an overall precision of 49.8%. At the same time, the lowest recall score was for the Precision Pinch

gesture with a value of 18%, whereas the highest score was for the Wrist Flexion gesture with a

score of 60.4%.

Even though the overall classification accuracies from both sensor modalities were above chance

(10%), these accuracies were lower than the lowest accuracy reported in the literature for user-

independent pattern recognition applications (73%) [82]. Therefore, the classification algorithm

was further optimized by removing some gestures from the gesture dataset. The next section

describes the classification performance using a 7 gesture dataset in an attempt to improve the

outcomes of the PAC classification method.

5.1.2 PAC: 7 Gesture Classification

After reducing the number of gestures in the gesture dataset by removing the EMG and the

IMU information from the removed gestures, a new LS-SVM classifier was created. The PAC

classification method was then applied to the cross-validation sets following the same procedure

described in the previous section.

The new classification results from each cross-validation iteration using the PAC classification

method in the 7 gesture dataset are presented in Table 5.2. Figure 5.2 shows the confusion matrices

for the twenty-two testing subjects when classifying the new 7 gestures in a user-independent sce-

nario using EMG data only (Figure 5.2a), and a combination of EMG and IMU data (Figure 5.2b).

For EMG data only, classification accuracies using the PAC classification algorithm ranged from

31.72–60.38% with a mean classification accuracy of 45.59%(±7.05%), whereas for the combined

www.manaraa.com

5.1 PAC Classification 65

EMG and IMU sensor modality, accuracies ranged from 23.88–57.50% with a mean accuracy of

42.58%(±10.35).

Table 5.2: Classification accuracies of 7 gestures for each cross-validation iteration set using PAC
classification method. The best classification result for each subject within each cross-
validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 48.34 55.97

S16 31.72 30.92

S17 48.43 54.15

S18 51.49 34.50

CVF1, CVF3,

CVF4, CVF5

S13 53.22 52.68

S14 45.67 33.67

S19 35.88 57.50

S22 49.19 39.62

S23 60.38 48.06

CVF1, CVF2,

CVF4, CVF5

S4 51.56 55.53

S6 44.17 36.39

S12 54.58 46.39

S20 46.90 26.24

S24 37.66 31.70

CVF1, CVF2,

CVF3, CVF5

S3 35.21 40.47

S5 48.29 54.52

S7 40.12 23.88

S25 48.08 37.31

CVF1, CVF2,

CVF3, CVF4

S2 45.09 42.74

S9 47.14 40.40

S11 43.02 54.73

S15 36.94 39.30

www.manaraa.com

5.1 PAC Classification 66

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

23720

378

1493

1006

4419

1590

1465

554

23338

2115

2275

3635

4718

1309

2204

2301

13395

4192

2791

3526

5181

1743

945

4899

10666

1607

2511

8690

3500

1516

2677

1473

13879

5636

3143

1048

4307

2734

2375

5165

12573

3183

891

1280

5378

9521

2663

3700

8993

70.5%

68.5%

41.0%

33.9%

40.6%

36.7%

28.1%

29.5%

31.5%

59.0%

66.1%

59.4%

63.3%

71.9%

69.6%

30.4%

61.5%

38.5%

39.9%

60.1%

34.3%

65.7%

43.6%

56.4%

40.1%

59.9%

27.7%

72.3%

(a)

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

21384

1419

3002

1695

5526

2578

1598

1325

19900

1768

2430

2273

4064

1480

2249

2371

11539

6473

2436

2279

4425

2623

1649

4712

8372

1869

2510

5897

3732

2411

4541

1977

14230

6067

2607

1409

3298

2886

3859

5969

12659

4520

938

3017

4243

6702

1856

4097

11437

63.5%

58.4%

35.3%

26.6%

41.7%

37.0%

35.8%

36.5%

41.6%

64.7%

73.4%

58.3%

63.0%

64.2%

57.5%

42.5%

59.9%

40.1%

36.3%

63.7%

30.3%

69.7%

40.0%

60.0%

36.6%

63.4%

35.4%

64.6%

(b)

Figure 5.2: PAC confusion matrix of the 7 gestures collected using EMG data only (a), and EMG
and IMU data (b) from all testing subjects. The last two rows from each confusion
matrix represent the precision score percentages and the false positive rate percentages
(the cumulative number of false positives) of each class, in the top and bottom row,
respectively. Similarly, the last two columns represent the recall score percentages and
the false negatives rate percentages (the cumulative number of false negatives) of each
class, in the left and right column, respectively.

www.manaraa.com

5.1 PAC Classification 67

Similar to the 10 gesture dataset, for each gesture, the precision and recall scores were also

calculated. For each classified gesture the precision and recall scores using EMG data only, and

EMG and IMU data combined, were calculated from the confusion matrix in Figure 5.2a, and in

Figure 5.2b, respectively.

For all of the gestures, the lowest precision score among the twenty-two subjects when using

EMG data only was for the Key Pinch gesture with an overall precision of 27.7%, and the highest

precision was for the Wrist Flexion gesture with an overall precision of 69.6%. Furthermore, the

lowest recall scores were for the Key Pinch with an overall score of 28.1%. The highest recall

score was for the Wrist Flexion gesture with an overall score of 70.5%. On the other hand, the

lowest precision score among the twenty-two subjects when using both modalities was for the Wrist

Supination gesture with an overall precision of 30.3%, and the highest precision score was for the

Wrist Extension gesture with an overall precision of 59.9%. Similarly, the lowest recall score was

for the Wrist Supination gesture with an overall score of 26.6%, whereas the highest score was for

the Wrist Flexion gesture with a score of 63.5%.

5.1.3 PAC: Discussion

The results obtained for the PAC classification method show no clear improvement in the clas-

sification accuracy using a combination of the EMG and IMU sensor data for any of the 10 and

7 gesture datasets. To further validate this assumption, a statistical analysis was done on both

gesture datasets. A paired sample t test comparison of means was performed between the accuracy

results from the EMG, and the EMG and IMU sensor modalities. For the 10 gesture dataset, the

results show that the mean recognition accuracy of the combined EMG and IMU sensor modality

(29.98%) was lower than the mean recognition accuracy of the EMG sensor data (33.11%), how-

ever, this difference was not statistically significant (p = 0.06). On the other hand, the results for

the 7 gesture dataset show that the mean recognition accuracy of the combined EMG and IMU

sensor modality (42.58%) was lower than the mean recognition accuracy using the EMG sensor

data alone (45.59%). Again, these results were not statistically significant (p = 0.189). It can

also be seen from the mean accuracies that the PAC classification algorithm had a similar perfor-

mance when the IMU data were added to the EMG data on both gesture datasets. Also, from the

www.manaraa.com

5.1 PAC Classification 68

precision and recall scores, it can be observed that there was no consistency on the classification

performance as most of the misclassified samples varied significantly between sensor modalities on

the gesture datasets.

The poor performance of the PAC classification method can be explained by looking at how

it works and how it was implemented. Given that the algorithm relies on updating the support

vectors, i.e., samples located closely to the separating hyperplane, it is a requirement for most

of the data to have the same probability distribution. It can be assumed that some of the data

distribution was at least close between subjects since the data were coming from the same gestures

across all subjects. However, other factors not considered in this study may have potentially

affected the classification performance. For example, because the sensors of the Myo Armband are

restricted to a specific position in the band, they cannot be placed on specific muscles, as their

placement is greatly influenced by the circumference of the user’s forearm, which in our study

ranged from 21.59–31.75 cm. This sensor placement greatly affects the reading of the EMG signal

by introducing some crosstalk between muscles, i.e., undesired EMG signals from surrounding

muscles [107].

Another potential factor that may have affected the distribution of the data, was the donning

of the Myo Armband by the different users, as this can introduce some electrode shift that affects

the classification accuracy [108]. Even though the PAC classification algorithm was meant to solve

this issue, the data distribution of a gesture from a specific subject may have overlapped with a

different gesture from other subjects. Furthermore, the introduction of the IMU features into the

classification method, may have caused some class imbalance issues, by potentially substituting

support vectors that belonged to a different class.

Even though the overall classification accuracies for the 10 and 7 gesture datasets where above

chance (10% and 14.28%, respectively), these results suggest that further improvement needs to be

done. In this sense, in order to potentially use the PAC classification method in a user-independent

scenario, it is important to account for the change in the data distribution introduced by multiple

subjects, as this has a considerable impact in the classification performance.

www.manaraa.com

5.2 Adaptive LS-SVM Classification 69

5.2 Adaptive LS-SVM Classification

After classifying the EMG and IMU data using the PAC classification method, the classification

performance using a different classification method was explored. This section describes the classi-

fication results of the 10 and 7 gesture datasets using the Adaptive LS-SVM classification method

described in Section 4.2. For each gesture dataset, features extracted from the EMG were classified

first using this method. Then, the IMU features were combined with the EMG feature sets for

further classification.

5.2.1 Adaptive LS-SVM: 10 Gesture Classification

Similarly to the PAC classification method, for each cross-validation iteration, a LS-SVM model

was created for each subject in the cross-validation iteration training set. Then, each subject in

the cross-validation testing set was tested using the Adaptive LS-SVM classification algorithm.

This procedure was repeated for both the EMG, and the EMG and IMU datasets.

Classification results from each cross-validation iteration using the Adaptive LS-SVM classifi-

cation method are presented in Table 5.3. Further, Figure 5.3 shows the confusion matrices for

the twenty-two testing subjects when classifying the 10 gestures in a user-independent scenario

using EMG data only (Figure 5.3a), and a combination of EMG and IMU data (Figure 5.3b).

Each column of each confusion matrix represents the instances in a predicted class, while each row

represents the instances in an actual class. For EMG data only, classification accuracies using the

Adaptive LS-SVM classification algorithm ranged from 55.64–81.14% with a mean classification

accuracy of 71.14%(±7.37%), whereas for the combined EMG and IMU sensor modality, accuracies

ranged from 56.39–82.40% with a mean accuracy of 72.10%(±7.24).

Following a similar procedure to the PAC classification method, for each gesture, the precision

and recall scores were also calculated. The precision and recall scores for each classified gesture

using EMG data only, and EMG and IMU data combined, were calculated from the confusion

matrix in Figure 5.3a, and in Figure 5.3b, respectively.

www.manaraa.com

5.2 Adaptive LS-SVM Classification 70

Table 5.3: Classification accuracies of 10 gestures for each cross-validation iteration set using the
Adaptive LS-SVM classification method. The best classification result for each subject
within each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 75.43 76.13

S16 60.06 62.08

S17 79.74 79.79

S18 79.74 80.43

CVF1, CVF3,

CVF4, CVF5

S13 75.44 75.80

S14 73.48 75.87

S19 77.11 77.28

S22 78.98 78.54

S23 66.36 65.91

CVF1, CVF2,

CVF4, CVF5

S4 77.11 79.89

S6 69.96 71.14

S12 67.29 68.04

S20 66.97 67.71

S24 73.86 74.84

CVF1, CVF2,

CVF3, CVF5

S3 81.14 82.40

S5 74.17 74.29

S7 70.20 70.83

S25 60.63 60.62

CVF1, CVF2,

CVF3, CVF4

S2 58.34 61.10

S9 73.84 74.63

S11 69.69 72.48

S15 55.64 56.39

www.manaraa.com

5.2 Adaptive LS-SVM Classification 71

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

28139

224

738

815

322

1881

319

187

152

521

159

28159

215

569

1666

1839

39

677

1504

146

674

266

22707

2107

2371

736

297

573

1029

1050

732

392

1920

20748

843

3512

524

1385

1720

2446

713

1524

3275

1016

21436

427

705

792

2014

3011

1359

326

495

1828

201

21050

284

1816

490

344

254

60

172

82

142

193

29643

344

123

1034

280

1324

278

1038

317

2482

398

25758

1576

740

400

1388

1528

1634

1800

1066

452

1596

18788

4120

943

401

1360

1665

2518

497

1489

1122

4009

18550

83.6%

82.7%

69.5%

65.9%

67.8%

62.5%

86.8%

75.2%

59.8%

58.0%

16.4%

17.3%

30.5%

34.1%

32.2%

37.5%

13.2%

24.8%

40.2%

42.0%

84.5%

15.5%

80.5%

19.5%

71.4%

28.6%

60.6%

39.4%

61.4%

38.6%

74.7%

25.3%

92.5%

7.5%

75.3%

24.7%

57.3%

42.7%

57.0%

43.0%

(a)

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

28384

170

757

846

250

1981

298

209

118

455

166

28231

258

628

1807

2069

55

768

1561

164

620

267

23369

2260

2284

625

253

469

846

829

670

372

2266

21379

829

2894

545

1182

1263

1982

697

1410

2976

1069

21328

385

763

876

1970

3000

1379

302

432

1555

141

21336

297

1753

485

434

279

82

127

105

161

201

29680

341

135

977

290

1365

233

844

315

2564

356

26006

1584

617

306

1498

1111

1491

1778

1119

413

1559

19204

4291

862

367

1159

1325

2723

509

1490

1087

4239

19213

84.3%

82.9%

71.5%

67.9%

67.5%

63.3%

86.9%

75.9%

61.1%

60.1%

15.7%

17.1%

28.5%

32.1%

32.5%

36.7%

13.1%

24.1%

38.9%

39.9%

84.8%

15.2%

79.1%

20.9%

73.4%

26.6%

64.0%

36.0%

61.9%

38.1%

75.9%

24.1%

92.5%

7.5%

76.1%

23.9%

58.6%

41.4%

58.3%

41.7%

(b)

Figure 5.3: Adaptive LS-SVM confusion matrix of the 10 gestures collected using EMG data only
(a), and EMG and IMU data (b) from all testing subjects. The last two rows from
each confusion matrix represent the precision score percentages and the false positive
rate percentages (the cumulative number of false positives) of each class, in the top
and bottom row, respectively. Similarly, the last two columns represent the recall score
percentages and the false negatives rate percentages (the cumulative number of false
negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.2 Adaptive LS-SVM Classification 72

For all of the gestures, the lowest precision scores among the twenty-two subjects when using

EMG data only was for the the Precision Pinch and the Key Pinch gestures with overall precision

scores of 57.3% and 57.0%, respectively. The highest precision was again for the Hand Close

gesture, which achieved an overall precision of 92.5%. At the same time, the lowest recall score

belonged to the Key Pinch gesture with a value of 58%, whereas the highest recall score was again

for the Hand Close gesture, with an overall score of 86.8%. Likewise, the lowest precision scores

among the twenty-two subjects when using both modalities were for the Precision Pinch and the

Key Pinch gestures with overall scores of 58.6% and 58.3%, respectively. Further, the highest

precision score was for the Hand Close gesture with an overall precision of 92.5%. Similarly, the

lowest recall score belonged to the Key Pinch gesture with a value of 60.1%, whereas the highest

recall score was for the Hand Close gesture, with an overall score of 86.9%.

Although most of the classification accuracies of this method were above 70%, the classification

algorithm was further optimized following a similar procedure as the PAC classification method,

i.e., by removing the data corresponding to some of the gestures. The next section will describe

the classification performance using this 7 gesture dataset.

5.2.2 Adaptive LS-SVM: 7 Gesture Classification

After reducing the number of gestures in the gesture dataset, a new LS-SVM classifier was created

for each subject so that the performance of the Adaptive LS-SVM classification method could be

assessed using the cross-validation testing sets during each cross-validation iteration. The new

classification results from each cross-validation iteration using the 7 gesture dataset are presented

in Table 5.4. Figure 5.4 shows the confusion matrices for the twenty-two testing subjects when

classifying the new 7 gestures in a user-independent scenario using EMG data only (Figure 5.4a),

and a combination of EMG and IMU data (Figure 5.4b). For EMG data only, classification

accuracies ranged from 61.69–92.54% with a mean classification accuracy of 83.45%(±7.46%),

whereas for the combined EMG and IMU sensor modality, accuracies ranged from 62.50–92.88%

with a mean accuracy of 84.55%(±7.32). Similar to the 10 gesture dataset, the precision and recall

scores for each classified gesture using EMG data only, and EMG and IMU data combined, were

calculated from the confusion matrix in Figure 5.4a, and in Figure 5.4b, respectively.

www.manaraa.com

5.2 Adaptive LS-SVM Classification 73

Table 5.4: Classification accuracies of 7 gestures for each cross-validation iteration set using the
Adaptive LS-SVM classification method. The best classification result for each subject
within each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 83.25 84.57

S16 66.29 67.32

S17 88.77 88.33

S18 84.00 85.60

CVF1, CVF3,

CVF4, CVF5

S13 87.84 88.20

S14 87.85 89.19

S19 92.54 92.88

S22 89.53 89.59

S23 82.91 85.64

CVF1, CVF2,

CVF4, CVF5

S4 87.35 88.33

S6 84.75 85.37

S12 87.48 87.95

S20 74.86 77.48

S24 83.13 83.93

CVF1, CVF2,

CVF3, CVF5

S3 89.66 90.47

S5 89.82 90.71

S7 85.59 86.69

S25 80.26 80.44

CVF1, CVF2,

CVF3, CVF4

S2 83.46 86.00

S9 80.00 80.93

S11 84.97 87.85

S15 61.69 62.50

www.manaraa.com

5.2 Adaptive LS-SVM Classification 74

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

29670

334

593

564

352

281

609

350

29846

541

333

141

824

391

971

441

27109

2678

445

365

1519

1081

880

2150

23911

707

1826

3157

339

105

229

393

30661

187

1038

510

1885

796

1436

527

29447

1589

737

570

1273

2190

1326

1322

23659

88.2%

87.6%

82.9%

75.9%

89.8%

86.0%

74.0%

11.8%

12.4%

17.1%

24.1%

10.2%

14.0%

26.0%

91.6%

8.4%

92.0%

8.0%

80.9%

19.1%

70.9%

29.1%

93.0%

7.0%

81.4%

18.6%

76.1%

23.9%

(a)

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

29858

243

507

476

359

285

475

320

30335

461

321

154

824

342

1032

445

27412

2890

415

363

1409

1015

730

2307

24314

756

1612

2837

333

113

175

280

30614

177

901

543

1694

695

1319

544

29765

1489

557

501

1134

1905

1317

1226

24509

88.7%

89.1%

83.9%

77.2%

89.6%

86.9%

76.7%

11.3%

10.9%

16.1%

22.8%

10.4%

13.1%

23.3%

92.7%

7.3%

92.6%

7.4%

80.7%

19.3%

72.4%

27.6%

93.9%

6.1%

82.6%

17.4%

78.7%

21.3%

(b)

Figure 5.4: Adaptive LS-SVM confusion matrix of the 7 gestures collected using EMG data only
(a), and EMG and IMU data (b) from all testing subjects. The last two rows from
each confusion matrix represent the precision score percentages and the false positive
rate percentages (the cumulative number of false positives) of each class, in the top
and bottom row, respectively. Similarly, the last two columns represent the recall score
percentages and the false negatives rate percentages (the cumulative number of false
negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.2 Adaptive LS-SVM Classification 75

For all of the gestures, the lowest precision score among the twenty-two subjects when using

EMG data only was for the Wrist Supination gesture with an overall precision of 70.9%, and

the highest precision was again for the Hand Close gesture with an overall precision of 93.0%.

Furthermore, the lowest recall score belonged to the Key Pinch gesture with a value of 74%,

whereas the highest recall score was again for the Hand Close gesture, with an overall score of

89.8%. Likewise, the lowest precision scores among the twenty-two subjects when using both

modalities was for the Wrist Supination gesture with an overall precision of 72.4%, and the highest

precision score was for the Hand Close gesture with an overall precision of 93.9%. Similarly, the

lowest recall score belonged to the Key Pinch gesture with a value of 76.7%, whereas the highest

recall score was for the Hand Close gesture, with an overall score of 89.6%.

5.2.3 Adaptive LS-SVM: Discussion

The results obtained from the Adaptive LS-SVM classification method improved when using a

combination of the EMG and IMU sensor data when classifying 10 gestures. In this sense, the

mean recognition accuracy of this sensor modality (72.1%) was slightly greater than the mean

recognition accuracy obtained when using the EMG data only (71.14%). Even though there

was no clear difference of the means, the paired sample t test showed that this small difference

was statistically significant (p < 0.001). Regarding the 7 gesture dataset, a significant increase

(p < 0.001) was also observed between the combined EMG and IMU data mean recognition

accuracy (84.55%) and the EMG data only mean recognition accuracy (83.45%). Furthermore,

from the confusion matrices, it can be observed that both, the precision and recall scores, scaled

linearly during the classification using the EMG data only, and the combination of the EMG and

IMU data. This behaviour was observed in both the 10 and the 7 gesture datasets. This indicates

that by combining the EMG and IMU features, not only did the classification performance improve,

but also the ability of the model to recognize each individual gesture better.

Furthermore, the addition of the IMU features did not affect the behaviour of the Adaptive

LS-SVM classification method. In this sense, the distribution of the data among subjects was not

affected, which is why the difference between the mean classified accuracies was of 1.091% and

0.956% for the 10 and 7 gesture datasets, respectively. However, similar to what Tommasi et al.[81]

www.manaraa.com

5.3 Bilinear Model-Based Classification 76

found, there were subjects whose recognition accuracy performed the worst. This was because their

data distribution was not able to match those of the pretrained models, thus making the norm of

~β in Equation (4.21) small enough that there was no transfer of prior knowledge. This indicates

that information from more subjects needs to be recorded in an attempt to compensate for this

issue. On another note, by using a linear combination from multiple prior models, i.e., by selecting

the best information from multiple pretrained models, the Adaptive LS-SVM classification method

was able to cope with most of the limitations that the PAC classification algorithm was not able

to handle. For example, by not substituting the support vectors of previous models but instead

using them as a starting point for training a new predictive model, it was possible to avoid class

imbalances by preserving the support vectors for each class.

These results suggest that the Adaptive LS-SVM classification based on the combination of

EMG and IMU sensor data can be effectively used in a user-independent scenario. However,

as explained before, data from more subjects need to be recorded to have a bigger database of

pretrained models. By doing so, it will be easier to match the data distribution of new users to

one of these pretrained models.

5.3 Bilinear Model-Based Classification

Having classified the EMG and IMU data using the PAC, and the LS-SVM classification models,

the bilinear model-based classification method was explored. The classification results of the 10

and 7 gesture datasets using this method, which was described in Section 4.3, are presented. For

each cross-validation iteration, a symmetric bilinear EMG model was created using the EMG

data of all of the subjects in the training set. Then, a new feature matrix was formed using

the motion-dependent factors of this bilinear EMG model. This feature matrix was then used to

train a NN model, which was finally tested using the cross-validation iteration testing set. To

test the performance of the bilinear model-based classification method when also using IMU data,

IMU signals from each subject in the corresponding cross-validation iteration training set were

averaged to obtain a new feature matrix that consisted of 12 features. This feature matrix was

then combined with the motion-dependent factors feature matrix, and then used to train a NN

www.manaraa.com

5.3 Bilinear Model-Based Classification 77

model. The classification performance of this NN model was tested on the cross-validation iteration

testing set.

5.3.1 Bilinear Models-Based Classification: 10 Gesture Classification

Classification results from each cross-validation iteration after using the bilinear model-based clas-

sification method are presented in Table 5.5. Figure 5.5 shows the confusion matrices for the

twenty-two testing subjects when classifying the 10 gestures in a user-independent scenario using

the bilinear EMG model data only (Figure 5.5a), and a combination of the bilinear EMG model

and IMU data (Figure 5.5b). Each column of each confusion matrix represents the instances in a

predicted class, while each row represents the instances in an actual class. For the bilinear EMG

model data only, classification accuracies using this method ranged from 10.99–40.61% with a

mean classification accuracy of 28.09%(±6.85%), whereas for the combined bilinear EMG model

and IMU data, accuracies ranged from 22.79–75.42% with a mean accuracy of 51.44%(±10.54).

Further, for each gesture, the precision and recall scores were also calculated. The precision

score for each classified gesture using the EMG bilinear model data only, and the EMG bilinear

model and IMU data combined, were calculated from the confusion matrix in Figure 5.5a, and in

Figure 5.5b, respectively. The same procedure was followed for calculating the recall scores.

For all of the gestures, the lowest precision score among the twenty-two subjects when using

the bilinear EMG model data only was for the Precision Pinch gesture, which the NN failed to

classify, followed by the Wrist Supination gesture with an overall precision score of 10.8%. Further,

the highest precision was for the Hand Close gesture with an overall precision of 51.4%. At the

same time, the lowest recall score belonged to the Precision Pinch gesture with a value of 0%, due

to the NN failing to classify this gesture. The highest recall score was for the Wrist Extension

gesture, with an overall score of 78.8%. On the other hand, the lowest precision scores among the

twenty-two subjects when using both modalities was for the Key Pinch gesture with an overall

precision of 36.5%, and the highest precision score was for the Wrist Flexion gesture with an overall

precision of 72.1%. Similarly, the lowest recall score belonged to the Precision Pinch gesture with

a value of 28.3%, whereas the highest recall score was for the Wrist Flexion gesture, with an overall

score of 77.6%.

www.manaraa.com

5.3 Bilinear Model-Based Classification 78

Table 5.5: Classification accuracies of 10 gestures for each cross-validation iteration set using bilin-
ear models classification method. The best classification result for each subject within
each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 35.75 49.02

S16 33.62 53.35

S17 25.42 56.94

S18 38.90 57.29

CVF1, CVF3,

CVF4, CVF5

S13 20.19 52.65

S14 10.99 22.79

S19 27.74 54.99

S22 24.32 53.37

S23 27.52 66.56

CVF1, CVF2,

CVF4, CVF5

S4 38.63 75.41

S6 26.27 58.55

S12 20.10 35.43

S20 24.72 50.56

S24 25.32 48.99

CVF1, CVF2,

CVF3, CVF5

S3 26.04 40.26

S5 40.61 51.32

S7 26.46 57.43

S25 28.68 58.97

CVF1, CVF2,

CVF3, CVF4

S2 29.87 46.07

S9 26.08 49.19

S11 26.76 46.43

S15 34.00 46.09

www.manaraa.com

5.3 Bilinear Model-Based Classification 79

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

14127

13

3221

1870

2375

1351

607

169

1276

3490

203

22873

2364

2268

2748

6468

5838

12999

9898

2573

3183

13

3192

628

4077

112

245

120

405

1344

11

345

1242

933

1240

630

16

79

2275

1873

2828

2996

12967

2343

12848

1704

3200

3755

6874

6267

6443

2494

4695

20310

4606

15673

5392

5698

6961

10897

1127

12

449

323

98

1026

5785

1038

215

1186

391

131

581

258

284

2076

7951

5181

605

795

1

163

329

107

764

6

1

531

615

49.9%

78.8%

11.0%

3.2%

44.2%

54.0%

19.9%

17.8%

2.1%

50.1%

21.2%

89.0%

96.8%

55.8%

46.0%

80.1%

82.2%

100.0%

97.9%

49.6%

50.4%

33.5%

66.5%

24.0%

76.0%

10.8%

89.2%

23.0%

77.0%

18.8%

81.2%

51.4%

48.6%

28.4%

71.6%

24.4%

75.6%

(a)

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

21977

5

1205

449

1156

2036

2389

1123

282

1614

20

21311

1028

1231

2840

3164

137

3441

5287

666

543

144

18426

5154

3660

154

536

425

634

948

192

60

3110

15747

217

565

136

243

684

897

188

1877

2014

712

13728

1170

365

672

3095

4126

3335

1171

610

2678

1389

15972

4783

5444

1797

3540

741

45

543

72

483

888

13278

4111

672

1252

197

1989

381

285

323

2907

5414

10164

3134

1682

59

2321

544

955

2065

1031

291

1376

8221

4312

1062

117

1179

1757

3179

1153

1711

2041

5234

10003

77.6%

73.4%

63.5%

54.2%

47.3%

55.0%

45.7%

35.0%

28.3%

34.4%

22.4%

26.6%

36.5%

45.8%

52.7%

45.0%

54.3%

65.0%

71.7%

65.6%

68.2%

31.8%

54.5%

45.5%

60.2%

39.8%

72.1%

27.9%

49.1%

50.9%

39.2%

60.8%

60.1%

39.9%

38.4%

61.6%

38.8%

61.2%

36.5%

63.5%

(b)

Figure 5.5: bilinear models-based confusion matrix of the 10 gestures collected using EMG data
only (a), and EMG and IMU data (b) from all testing subjects. The last two rows from
each confusion matrix represent the precision score percentages and the false positive
rate percentages (the cumulative number of false positives) of each class, in the top
and bottom row, respectively. Similarly, the last two columns represent the recall score
percentages and the false negatives rate percentages (the cumulative number of false
negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.3 Bilinear Model-Based Classification 80

Following a similar approach to the previous classification methods explained in this chapter,

the gesture datasets where further optimized in an attempt to improve the classification accuracy.

The next section will discuss the results of said optimization.

5.3.2 Bilinear Models-Based Classification: 7 Gesture Classification

After reducing the number of gestures in the gesture dataset, a new bilinear model had to be

created from the EMG signals of each subject within each cross-validation iteration training set.

Then, a similar procedure described in the previous section was followed to classify the gestures

of each subject in the cross-validation testing set using a NN classifier.

The new classification results from each cross-validation iteration using the 7 gesture dataset

are presented in Table 5.6. Moreover, Figure 5.6 shows the confusion matrices for the twenty-two

testing subjects when classifying the new 7 gestures in a user-independent scenario using the EMG

bilinear model data only (Figure 5.6a), and a combination of the EMG bilinear model and IMU

data (Figure 5.6b). For the EMG bilinear model data only, classification accuracies ranged from

21.23–67.31% with a mean classification accuracy of 42.82%(±11.53%), whereas for the combined

EMG bilinear model and IMU sensor data, accuracies ranged from 42.96–84.86% with a mean

accuracy of 67.53%(±11.64).

Similarly to the 10 gesture dataset, the precision and recall scores for each classified gesture

using the EMG bilinear model data only, and the EMG bilinear model and IMU data combined,

were calculated from the confusion matrix in Figure 5.6a, and in Figure 5.6b, respectively.

For all of the gestures, the lowest precision score among the twenty-two subjects when using the

EMG bilinear model data only was for the Key Pinch gesture with an overall precision of 19.3%,

and the highest precision corresponded to the Wrist Flexion gesture with an overall precision of

51.6%. At the same time, the lowest recall score belonged to the Key Pinch gesture with a value of

0.8%, whereas the highest recall score was for the Wrist Extension gesture, with an overall score of

78.8%. On the other hand, the lowest precision score among the twenty-two subjects when using

both modalities was for the Hand Open gesture with an overall precision of 53.3%, and the highest

precision score was for the Wrist Flexion gesture with an overall precision of 76.1%. Similarly, the

lowest recall score belonged to the Hand Open gesture with a value of 50.1%, whereas the highest

www.manaraa.com

5.3 Bilinear Model-Based Classification 81

recall score was for the Wrist Flexion gesture, with an overall score of 87.5%.

Table 5.6: Classification accuracies of 7 gestures for each cross-validation iteration set using bilin-
ear models-based classification method. The best classification result for each subject
within each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 30.20 62.80

S16 32.10 59.96

S17 36.34 74.11

S18 32.38 60.77

CVF1, CVF3,

CVF4, CVF5

S13 51.52 77.34

S14 36.22 55.73

S19 67.31 80.46

S22 57.74 70.36

S23 60.14 80.87

CVF1, CVF2,

CVF4, CVF5

S4 56.36 84.86

S6 43.75 77.51

S12 30.77 48.27

S20 42.05 66.38

S24 37.27 50.15

CVF1, CVF2,

CVF3, CVF5

S3 21.23 42.96

S5 40.19 78.57

S7 48.90 78.99

S25 40.11 69.00

CVF1, CVF2,

CVF3, CVF4

S2 55.31 75.09

S9 47.81 68.56

S11 38.95 57.78

S15 35.36 65.10

www.manaraa.com

5.3 Bilinear Model-Based Classification 82

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

21818

168

3972

1434

8121

2869

3922

790

22871

5379

12484

1392

9643

8788

2990

1820

15536

4051

3558

4806

7793

1072

443

1970

9837

296

301

6528

1437

1021

859

764

10675

5862

785

161

2717

771

184

4983

5538

1004

46

553

286

15

21

220

77.1%

78.8%

53.5%

33.9%

36.8%

19.1%

0.8%

22.9%

21.2%

46.5%

66.1%

63.2%

80.9%

99.2%

51.6%

48.4%

37.3%

62.7%

38.3%

61.7%

48.1%

51.9%

49.9%

50.1%

36.1%

63.9%

19.3%

80.7%

(a)

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

24775

5

1370

989

2544

891

1982

28

24555

907

939

209

4799

1625

974

377

19645

5507

1485

1420

2206

266

267

3799

18303

206

630

1434

1085

257

823

352

17020

3843

1671

213

2534

848

626

6209

14552

2329

973

1045

1648

2324

1367

2905

17793

87.5%

84.6%

67.6%

63.0%

58.6%

50.1%

61.3%

12.5%

15.4%

32.4%

37.0%

41.4%

49.9%

38.7%

76.1%

23.9%

74.3%

25.7%

62.1%

37.9%

73.5%

26.5%

67.9%

32.1%

53.3%

46.7%

63.4%

36.6%

(b)

Figure 5.6: bilinear models-based confusion matrix of the 7 gestures collected using EMG data
only (a), and EMG and IMU data (b) from all testing subjects. The last two rows
from each confusion matrix represent the precision score percentages and the false
positive rate percentages (the cumulative number of false positives) of each class, in
the top and bottom row respectively, whereas the last two columns represent the recall
score percentages and the false negatives rate percentages (the cumulative number of
false negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.3 Bilinear Model-Based Classification 83

5.3.3 Bilinear Models-Based Classification: Discussion

The results obtained by using EMG based bilinear models in combination with the IMU sensor

data when classifying 10 gestures, show a significant increase (p < 0.001) in the overall gesture

recognition accuracy (51.44%) when compared to the recognition accuracy obtained by using the

EMG bilinear model only (28.09%). Similar results were obtained when using the 7 gesture dataset.

In this sense, when comparing the overall recognition accuracies obtained between the EMG bi-

linear models combined with the IMU sensor data (67.53%), and the bilinear models EMG data

only (42.82%), a significant increase (p < 0.001) was also observed.

Furthermore, from the confusion matrices, it can be observed that, when using the data coming

from the IMU, the classification model was able to increase the recall scores. For example, from the

confusion matrix in Figure 5.5a, it can be seen that the classification algorithm failed to classify

the Precision Pinch gesture 100% of the time. A similar case occurred with the Key Pinch gesture

in the 7 gesture dataset, which was misclassified most of the time as being a Wrist Extension or

a Wrist Supination gesture (Figure 5.6a). Therefore, by adding the IMU data, the NN algorithm

employed was able to cope with this issue by using the information from the extra features to

make more general assumptions about the corresponding class of unseen data.

Although the classification performance improved, the low recognition accuracies impose a

major drawback on this classification method. This poor performance can be explained by three

important factors with the first one being the classification under confounding factors, i.e., the

gestures being classified under different arm positions. To deal with this issue, Ishii et al. [109]

proposed the use of a two-stage bilinear model in which during the first stage, user-dependent and

postural-dependent factors were separated. Then, during the second stage, the motion-dependent

factors were separated from the postural-dependent factors. However, even though the results

showed an improvement during classification, the validation of their methods was obscure. In this

sense, they failed to report the procedure followed to build the bilinear models, e.g., the number

of subjects assigned to the training and testing set or the classification algorithm parameters used

were not reported. Further, no statistical analysis was performed to validate their approach.

The second important factor that affected the classification performance of the proposed

www.manaraa.com

5.4 MLP Networks Classification 84

method, was the donning of the Myo Armband by novel users. Similarly to the PAC classifi-

cation algorithm, and explained by Matsubara et al. [82], the use of bilinear models required the

electrodes to be placed on the exact same location for all the users. However, the difference in the

dimensions of the forearm between subjects imposes a great obstacle for achieving this require-

ment. This suggests that the classification method can be further optimized by adopting a similar

approach as in [110], were the displacement of the sensors was estimated in order to improve the

classification accuracies.

Finally, the third factor was related to how the style and content variables (Equations (4.30)

and (4.31)) were computed. As explained in Section 4.3.2, the dimension of these parameters

are given by the values I and J , which for this application were selected as 2 and 3 respectively.

This resulted in a reduced number of features used for classification, which could have increased

the bias of the NN algorithm. To cope with this issue, a similar approach used to obtain the

principal components during PCA could be applied. Given that the iterative process to find the

style and content variables is based on using the singular value decomposition (SVD) factorization,

we can initialize the values I and J as the nth row of the diagonal matrix sigma computed for

each variable, with n being small enough, so that a specific percentage of the variance of the initial

stacked matrix Ȳ (Equation (4.28)) is retained.

Overall, the inclusion of the IMU features as an extra input for the classification of gestures

using bilinear models, showed that this classification method has the potential to be used in a user-

independent scenario. However, further improvement needs to be done to increase the efficacy of

the proposed method in order to improve the recognition accuracies.

5.4 MLP Networks Classification

After exploring the classification performance of the first 3 user-independent classification methods,

the MLP networks classification method was evaluated. This section describes the classification

results of classifying the 10 and 7 gesture datasets using MLP networks, which were described

in Section 4.4. For each gesture dataset, features extracted from the EMG were classified first

using this method. Then, the IMU features were combined with the EMG feature sets for further

classification.

www.manaraa.com

5.4 MLP Networks Classification 85

5.4.1 MLP Networks: 10 Gesture Classification

For each cross-validation iteration, a MLP network was first trained using sixty-four features ex-

tracted from the EMG data corresponding to the cross-validation training set, and then trained

using twelve additional features from the IMU data. This was done to further analyze the con-

tributions of the IMU data to the classification accuracy of the 10 gestures in a user-independent

scenario. To train the network using both sensor modalities, a feature fusion approach was em-

ployed by combining features extracted from the IMU with features extracted from the EMG into

a single matrix that was used as the input to the network. It is worth mentioning that, during

training of the MLP network, features were reduced using PCA. However, after testing the perfor-

mance of the network in the cross-validation set (Figure 4.8), it was found that the classification

accuracy dropped. Therefore, no feature reduction was used for the MLP network classification.

Finally, to observe the classification performance, data from each subject in the cross-validation

iteration testing set were classified using the MLP network.

Classification results from each cross-validation iteration are presented in Table 5.7. Further,

Figure 5.7 shows the confusion matrices for the twenty-two testing subjects when classifying the

10 gestures in a user-independent scenario using EMG data only (Figure 5.7a), and a combination

of EMG and IMU data (Figure 5.7b). Each column of each confusion matrix represents the

instances in a predicted class, while each row represents the instances in an actual class. For

EMG data only, classification accuracies using the MLP networks ranged from 21.31–57.10% with

a mean classification accuracy of 44.53%(±11.27%), whereas for the combined EMG and IMU

sensor modality, accuracies ranged from 28.60–67.94% with a mean accuracy of 53.44%(±12.15).

For each gesture, the precision and recall scores were also calculated. The precision and recall

scores for each classified gesture using EMG data only, and EMG and IMU data combined, were

calculated from the confusion matrix in Figure 5.7a, and in Figure 5.7b, respectively.

www.manaraa.com

5.4 MLP Networks Classification 86

Table 5.7: Classification accuracies of 10 gestures for each cross-validation iteration set using MLP
networks classification method. The best classification result for each subject within
each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 52.99 58.06

S16 42.46 56.24

S17 53.45 65.55

S18 53.70 66.14

CVF1, CVF3,

CVF4, CVF5

S13 47.93 59.84

S14 24.09 33.52

S19 44.61 57.99

S22 42.37 55.39

S23 57.00 67.94

CVF1, CVF2,

CVF4, CVF5

S4 54.94 67.01

S6 30.06 36.67

S12 21.31 28.60

S20 57.10 64.42

S24 39.01 46.58

CVF1, CVF2,

CVF3, CVF5

S3 23.00 30.53

S5 39.48 47.96

S7 50.86 60.22

S25 53.46 64.01

CVF1, CVF2,

CVF3, CVF4

S2 50.20 54.35

S9 51.31 55.09

S11 52.49 56.79

S15 37.86 42.81

www.manaraa.com

5.4 MLP Networks Classification 87

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

25009

472

930

360

242

1674

297

55

78

234

1685

24522

1252

520

1831

2124

189

507

2207

460

1935

1775

12003

1658

3067

970

428

1509

1267

1015

1409

1941

7560

11588

3949

2699

796

1908

3466

3113

1714

2788

6065

5949

13907

4895

1273

2434

3976

4205

2161

2059

1806

4934

3240

16411

2709

6133

3857

4176

775

1034

1784

2528

2391

3764

26949

6200

3406

4132

372

777

1431

2563

1913

2090

1853

13793

5326

4496

228

383

1117

1974

1740

547

863

2955

6747

6642

119

107

464

1090

1005

283

599

563

2733

5175

70.6%

68.4%

34.9%

34.9%

41.8%

46.3%

74.9%

38.3%

20.4%

15.4%

29.4%

31.6%

65.1%

65.1%

58.2%

53.7%

25.1%

61.7%

79.6%

84.6%

85.2%

14.8%

69.5%

30.5%

46.8%

53.2%

30.2%

69.8%

29.5%

70.5%

34.6%

65.4%

50.9%

49.1%

39.8%

60.2%

29.1%

70.9%

42.6%

57.4%

(a)

WF WE WP WS WAd WAb HC HO PP KP

Predicted Class

WF

WE

WP

WS

WAd

WAb

HC

HO

PP

KP

T
r
u
e

C
l
a
s
s

26944

392

626

146

222

1358

339

93

66

288

1880

20190

966

310

1777

2183

156

441

1931

302

1210

5894

20382

3045

2181

949

229

960

1107

470

999

1636

6619

21204

3569

1887

588

1441

2192

1586

1145

2920

2686

2452

15108

3608

991

1859

3308

2346

1328

2192

712

2092

3016

16892

1949

4139

2709

2584

1026

853

973

1091

1977

3875

27801

5233

2754

3714

455

1150

671

1113

2000

3502

2443

18515

5479

4238

262

472

495

957

2120

864

968

2729

9475

8470

158

159

282

754

1315

339

492

647

4042

9650

76.1%

56.3%

59.2%

63.9%

45.4%

47.6%

77.3%

51.3%

28.7%

28.7%

23.9%

43.7%

40.8%

36.1%

54.6%

52.4%

22.7%

48.7%

71.3%

71.3%

88.4%

11.6%

67.0%

33.0%

56.0%

44.0%

50.8%

49.2%

41.5%

58.5%

44.9%

55.1%

56.4%

43.6%

46.8%

53.2%

35.3%

64.7%

54.1%

45.9%

(b)

Figure 5.7: MLP network confusion matrix of the 10 gestures collected using EMG data only (a),
and EMG and IMU data (b) from all testing subjects. The last two rows from each
confusion matrix represent the precision score percentages and the false positive rate
percentages (the cumulative number of false positives) of each class, in the top and
bottom row, respectively. Similarly, the last two columns represent the recall score
percentages and the false negatives rate percentages (the cumulative number of false
negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.4 MLP Networks Classification 88

For all of the gestures, the lowest precision score among the twenty-two subjects when using

EMG data only was for the Precision Pinch gesture with an overall precision of 29.1%, and the

highest precision was for the Wrist Flexion gesture with an overall precision of 85.2%. Similarly,

the lowest recall score belonged to the Key Pinch gesture with a value of 15.4%, whereas the

highest recall score was again for the Hand Close gesture, with an overall score of 74.9%. On the

other hand, the lowest precision score among the twenty-two subjects when using both modalities

was for the Precision Pinch gesture with an overall precision of 35.3%, and the highest precision

score was for the Wrist Flexion gesture with an overall precision of 88.4%. Further, the lowest

recall scores belonged to the Precision Pinch and Key Pinch gestures with a score of 28.7% for

both gestures, whereas the highest recall score was for the Hand Close gesture, with an overall

score of 77.3%.

Following a similar approach to the previous classification methods, the gesture datasets where

further optimized by removing redundant gestures in an attempt to improve the classification

accuracy. The next section will discuss the results of said optimization.

5.4.2 MLP Networks: 7 Gesture Classification

After reducing the number of gestures in the gesture dataset, a new classifier based on MLP

networks was created for each subject so that the performance of the classification method could

be assessed using the cross-validation iterations testing sets.

The new classification results from each cross-validation iteration using the 7 gesture dataset

are presented in Table 5.8. Moreover, Figure 5.8 shows the confusion matrices for the twenty-two

testing subjects when classifying the new 7 gestures in a user-independent scenario using EMG

data only (Figure 5.8a), and a combination of EMG and IMU data (Figure 5.8b). For EMG data

only, classification accuracies ranged from 36.53–78.91% with a mean classification accuracy of

64.82%(±12.83%), whereas for the combined EMG and IMU sensor modality, accuracies ranged

from 36.10–88.27% with a mean accuracy of 73.68%(±14.05).

Again, for each gesture, the precision and recall scores were also calculated. The precision and

recall scores for each classified gesture using EMG data only, and EMG and IMU data combined,

were calculated from the confusion matrix in Figure 5.8a, and in Figure 5.8b, respectively.

www.manaraa.com

5.4 MLP Networks Classification 89

Table 5.8: Classification accuracies of 7 gestures for each cross-validation iteration set using MLP
networks classification method. The best classification result for each subject within
each cross-validation iteration testing set is shown in bold.

Cross-Validation Iteration Classification Accuracy (%)

Training Set Testing Set EMG EMG + IMU

CVF2, CVF3,

CVF4, CVF5

S10 68.54 73.34

S16 65.63 73.14

S17 78.91 87.32

S18 74.80 82.19

CVF1, CVF3,

CVF4, CVF5

S13 70.88 80.56

S14 41.93 51.99

S19 73.92 86.55

S22 64.58 77.52

S23 74.67 83.88

CVF1, CVF2,

CVF4, CVF5

S4 73.68 85.31

S6 53.90 60.29

S12 36.94 46.41

S20 76.46 82.11

S24 59.51 65.01

CVF1, CVF2,

CVF3, CVF5

S3 36.53 36.10

S5 66.03 80.61

S7 78.00 88.27

S25 71.76 79.65

CVF1, CVF2,

CVF3, CVF4

S2 72.88 79.34

S9 66.46 77.39

S11 68.05 79.72

S15 51.99 64.20

www.manaraa.com

5.4 MLP Networks Classification 90

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

29709

402

789

437

603

124

505

1128

30091

2157

1018

406

1227

1024

1304

1385

21349

3151

1064

2763

2864

1434

1149

4784

18916

1879

3839

6911

995

1390

2309

3676

28409

5934

5825

521

1154

1632

3207

2285

20631

6030

316

287

1392

2759

1310

1539

10489

83.9%

83.9%

62.0%

57.0%

79.0%

57.2%

31.2%

16.1%

16.1%

38.0%

43.0%

21.0%

42.8%

68.8%

91.2%

8.8%

81.2%

18.8%

63.0%

37.0%

48.6%

51.4%

58.5%

41.5%

58.2%

41.8%

58.0%

42.0%

(a)

WF WE WP WS HC HO KP

Predicted Class

WF

WE

WP

WS

HC

HO

KP

T
r
u
e

C
l
a
s
s

30642

283

498

164

668

197

596

1122

30469

1123

512

385

1172

695

918

963

24520

4086

603

1836

1256

837

918

5195

23564

1237

2341

2987

999

1377

1377

1709

29011

4831

3941

571

1350

907

1726

2683

23955

5608

318

498

792

1403

1369

1725

18565

86.5%

85.0%

71.3%

71.1%

80.7%

66.4%

55.2%

13.5%

15.0%

28.7%

28.9%

19.3%

33.6%

44.8%

92.7%

7.3%

85.9%

14.1%

71.7%

28.3%

63.6%

36.4%

67.1%

32.9%

65.1%

34.9%

75.3%

24.7%

(b)

Figure 5.8: MLP networks confusion matrix of the 7 gestures collected using EMG data only (a),
and EMG and IMU data (b) from all testing subjects. The last two rows from each
confusion matrix represent the precision score percentages and the false positive rate
percentages (the cumulative number of false positives) of each class, in the top and
bottom row, respectively. Similarly, the last two columns represent the recall score
percentages and the false negatives rate percentages (the cumulative number of false
negatives) of each class, in the left and right column, respectively.

www.manaraa.com

5.4 MLP Networks Classification 91

For all of the gestures, the lowest precision score among the twenty-two subjects when using

EMG data only was for the Wrist Supination gesture with an overall precision of 48.6%, and the

highest precision was again for the Wrist Flexion gesture with an overall precision of 91.2%. At the

same time, the lowest recall score belonged to the Key Pinch gesture with a value of 31.2%, whereas

the highest recall scores corresponded to the Wrist Flexion and Wrist Extension gestures, with

an overall score of 83.9% for both gestures. On the other hand, the lowest precision score among

the twenty-two subjects when using both modalities was for the Wrist Supination gesture with an

overall precision of 63.6%, and the highest precision score was for the Wrist Flexion gesture with

an overall precision of 92.7%. Further, the lowest recall score belonged to the Key Pinch gesture

with a score of 55.2%, whereas the highest recall score was for the Wrist Flexion gesture, with an

overall score of 86.5%.

5.4.3 MLP Networks: Discussion

The classification performance of the MLP networks improved when using a combination of the

EMG and IMU sensor data. In this sense, the mean recognition accuracy when using the two-

sensor modality (53.44%) was considerably greater than the mean recognition accuracy obtained

when using the EMG data only (44.53%) when classifying 10 gestures. This assumption was

upheld by the paired sample t test, which showed that the results were statistically significant

(p < 0.001). Regarding the 7 gesture dataset, a significant increase (p < 0.001) was also observed

between the mean recognition accuracy of the combined EMG and IMU data (73.68%) and the

mean recognition accuracy of the EMG data only (64.82%).

Regarding the 10 gesture dataset, even though the classification performance improved when

using the IMU data, there was little improvement in the precision and recall scores of the Wrist

Adduction, Wrist Abduction, and Precision Pinch gestures (Figure 5.7), which indicates that the

MLP network failed to generalize properly the unseen data that corresponded to these three classes.

This is caused by the redundant muscles governing multiple wrist motions as in the case of the

Wrist Extension and the Wrist Adduction gestures [96]. Therefore, by using a reduced number of

gestures, an increase of the precision and recall scores can be observed from Figures 5.8a and 5.8b.

This indicates that the MLP network was able to overcome the intrinsic variability of the EMG

www.manaraa.com

5.5 Comparison of Classification Methods 92

signals among different subjects.

Despite being able to increase the recognition accuracy and keep a consistent classification

accuracy trend with new subjects, this approach has several limitations. It is well known that

the topology of an ANN is usually determined empirically, so by adopting an approach similar to

[77], the performance of the proposed model can be improved. Another limitation is the improper

placement of the Myo Armband, which can affect the performance of the classification algorithm,

specially in a user-independent scenario. To deal with this issue, a similar approach followed in

[111], in which a classifier was trained using the data obtained from the Myo Armband while it

was placed in different forearm locations, can be implemented. By doing so, it may be possible

to avoid the change of distribution of the data due to displacements of the EMG electrodes. One

final limitation of the proposed classification method is that MLP networks are sensible to feature

noise, which is attributed to the inability of the users to match the same level of contraction

when performing the trained gestures [67]. This will inevitably degrade the ability of the trained

network to properly classify the gestures thus, requiring the MLP network to be retrained at some

point. Therefore, a self-recalibration algorithm that can track said degradation (e.g., [112]) can

be implemented to improve the robustness of the classifier.

Overall, the results showed that it is possible to achieve recognition accuracies of up to 67.94%

with an average recognition accuracy of 53.44% among five subjects when classifying 10 gestures

using a combination of EMG and IMU features. Furthermore, when classifying the 7 gesture

dataset, recognition accuracies increased up to 88.27% with a mean accuracy of 73.68%. This

indicates that by using the proposed classification approach, which consists of classifying EMG

and IMU data coming from the Myo Armband using MLP networks, it is possible to achieve a

user-independent classification.

5.5 Comparison of Classification Methods

Following the analysis of the performance of each individual classification-method on the 10 and

7 gesture datasets, a statistical analysis was performed using the Statistical Package for Social

Sciences v.25 (SPSS) software in order to identify the best classification method. First, a four-by-

www.manaraa.com

5.5 Comparison of Classification Methods 93

two repeated measures ANOVA with a Boneferroni correction Post Hoc test, was performed to

identify differences between each classification method. This was done to observe the effects that

the classification method (factor), and the sensor modality (level), i.e., EMG data only, and EMG

and IMU data, had on the gesture recognition accuracy. This procedure was performed on both

the 10 and 7 gesture datasets. Finally, accuracies from the best classification method with the best

sensor modality were compared against each other using a four-factor repeated measures ANOVA

with a Boneferroni correction Post Hoc test. This section will discuss the significant differences

found in the results.

5.5.1 Pairwise Comparisons

Tables 5.9 and 5.10 show the statistical analysis results of comparing the four classification models

using the EMG, and EMG and IMU data on the 10 and 7 gesture datasets, respectively. A

statistical significance was found between all four models (p ≤ 0.003), which means that the

classification performance is not only affected by the sensor modality as shown above, but also by

the type of classification approach employed. Furthermore, a significant interaction was observed

in the Bilinear Models based classification and the PAC classification method cases (p < 0.001),

and the effects of this interaction can be seen in Figures 5.9a and 5.9b. In this sense, the Bilinear

Models based classification had a lower classification performance than the PAC classification

method when using EMG data only. However, when classifying a combination of EMG and

IMU data, the Bilinear Model based classification algorithm outperformed the PAC classification

method. A similar behaviour was observed in the 7 gesture dataset.

Furthermore, from Tables 5.9 and 5.10, it can be noted that the classification method that

performed worst was the PAC, whereas the best classification method was the Adaptive LS-SVM.

Interestingly, the classification method that performed second best was the one based on MLP

networks, which suggests that the use of the calibration set employed in the PAC, Adaptive

LS-SVM, and Bilinear Models classification algorithms was not a critical factor that affected the

classification outcomes. Without the calibration set, these methods would not be able to accurately

classify data. However, this is not the case of the MLP network classification model, as it was able

to generalize to unseen data without transfer of prior knowledge.

www.manaraa.com

5.5 Comparison of Classification Methods 94

Table 5.9: Pairwise comparison of the different classification methods used with the 10 gesture
dataset.

Classification Method Mean Difference (%) Std. Error (%) Significance

PAC

Adaptive LS-SVM -40.074 1.896 < 0.001

Bilinear Models -8.216 1.992 0.003

MLP Networks -17.437 2.598 < 0.001

Adaptive LS-SVM

PAC 40.074 1.896 < 0.001

Bilinear Models 31.858 2.258 < 0.001

MLP Networks 22.636 2.941 < 0.001

Bilinear Models

PAC 8.216 1.992 0.003

Adaptive LS-SVM -31.858 2.258 < 0.001

MLP Networks -9.222 1.857 < 0.001

MLP Networks

PAC 17.437 2.598 < 0.001

Adaptive LS-SVM -22.636 2.941 < 0.001

Bilinear Models 9.222 1.857 < 0.001

Figures 5.10a and 5.10b show the classification performance on the 10 and 7 gesture datasets

when classifying both the EMG, and EMG and IMU data using each classification method. It

can be seen that changing the number of gestures did not have an effect on the performance of a

specific classification method. More specifically, the trend of each model regarding its classification

accuracy did not change, i.e., the classification methods improved their prediction accuracy but

the order of the best performing model remained the same. It should also be noted that, while

the performance of the MLP networks was similar to the Bilinear Model classification when using

data from the EMG and IMU combined for the 10 gesture dataset (mean difference = 2.0029), the

difference in performance increased for the 7 gesture dataset when using data from the EMG and

IMU combined (mean difference = 6.15).

www.manaraa.com

5.5 Comparison of Classification Methods 95

Table 5.10: Pairwise comparison of the different classification methods used with the 7 gesture
dataset.

Classification Method Mean Difference (%) Std. Error (%) Significance

PAC

Adaptive LS-SVM -39.915 1.568 < 0.001

Bilinear Models -11.088 2.288 0.001

MLP Networks -25.164 2.883 < 0.001

Adaptive LS-SVM

PAC 39.915 1.568 < 0.001

Bilinear Models 28.827 2.508 < 0.001

MLP Networks 14.751 3.230 0.001

Bilinear Models

PAC 11.088 2.288 0.001

Adaptive LS-SVM -28.827 2.508 < 0.001

MLP Networks -14.076 2.077 < 0.001

MLP Networks

PAC 25.164 2.883 < 0.001

Adaptive LS-SVM -14.751 3.230 0.001

Bilinear Models 14.076 2.077 < 0.001

www.manaraa.com

5.5 Comparison of Classification Methods 96

(a)

(b)

Figure 5.9: Interaction between the classification methods and the sensor modality for 10 gestures
(a), and 7 gestures (b). Error bars represent the standard error of the mean.

www.manaraa.com

5.5 Comparison of Classification Methods 97

(a)

(b)

Figure 5.10: Overall accuracies of the classification methods using EMG data, and EMG and IMU
data for 10 gestures (a), and 7 gestures (b). Error bars represent the standard error
of the mean.

www.manaraa.com

5.5 Comparison of Classification Methods 98

5.5.2 Best Sensor Modality Pairwise Comparisons

After identifying the sensor modality that improved the performance of each classification method

the most, a statistical analysis was performed to compare the ability of each method to classify

the 10 and 7 gesture datasets. For the 10 gesture dataset the majority of the pairwise comparisons

showed a significant difference (p < 0.001), the exception being the MLP networks and the Bilinear

Model classification method, which showed no significant differences (Table 5.11). This can be

observed better in Figure 5.11, in which the length of the MLP networks and the Bilinear Models

bars are almost identical for the 10 gesture dataset. However, after reducing the number of gestures

to the 7 gesture dataset, all models showed statistical differences (Table 5.12).

Table 5.11: Pairwise comparison of the different classification methods using the best sensor modal-
ity with the 10 gesture dataset.

Classification Method Mean Difference (%) Std. Error (%) Significance

PAC

Adaptive LS-SVM -38.988 1.845 < 0.001

Bilinear Models -18.325 2.605 < 0.001

MLP Networks -20.328 2.716 < 0.001

Adaptive LS-SVM

PAC 38.988 1.845 < 0.001

Bilinear Models 20.662 2.677 < 0.001

MLP Networks 18.659 2.999 < 0.001

Bilinear Models

PAC 18.325 2.605 < 0.001

Adaptive LS-SVM -20.662 2.677 < 0.001

MLP Networks -2.003 1.796 1.000

MLP Networks

PAC 20.328 2.716 < 0.001

Adaptive LS-SVM -18.659 2.999 < 0.001

Bilinear Models 2.003 1.796 1.000

www.manaraa.com

5.5 Comparison of Classification Methods 99

Table 5.12: Pairwise comparison of the different classification methods using the best sensor modal-
ity with the 7 gesture dataset.

Classification Method Mean Difference (%) Std. Error (%) Significance

PAC

Adaptive LS-SVM -38.951 1.731 < 0.001

Bilinear Models -21.932 2.461 < 0.001

MLP Networks -28.082 2.996 < 0.001

Adaptive LS-SVM

PAC 38.951 1.731 < 0.001

Bilinear Models 17.019 2.734 < 0.001

MLP Networks 10.869 3.335 0.022

Bilinear Models

PAC 21.932 2.461 < 0.001

Adaptive LS-SVM -17.019 2.734 < 0.001

MLP Networks -6.150 1.977 0.032

MLP Networks

PAC 28.082 2.996 < 0.001

Adaptive LS-SVM -10.869 3.335 0.022

Bilinear Models 6.150 1.977 0.032

www.manaraa.com

5.6 Conclusion 100

Figure 5.11: Overall accuracies of the classification methods from the best sensor modality. Error
bars represent the standard error of the mean.

5.6 Conclusion

The results obtained show an improvement on the overall recognition accuracy when using a

classifier trained with a combination of EMG and IMU data, instead of EMG data only. The

exception was the PAC classification method whose performance degraded, albeit, this degradation

was not statistically significant. Previous studies based on the classification of hand gestures using

a combination of EMG and IMU data were able to achieve similar accuracies to the proposed

model in this thesis. For example, a recognition accuracy of 74.3% was reported in [21] using

Hidden Markov Models (HMM) to classify twelve gestures. Likewise, Zhang et al. [113] reported

a classification accuracy of 90.2% when classifying eighteen gestures to solve a virtual Rubik’s

cube using a classifier based on HMM and decision trees. However, these studies have two main

limitations, the first one is the low number of subjects recruited, which prevents the classification

algorithm from generalizing better to a larger population. The second limitation is that the gesture

www.manaraa.com

5.6 Conclusion 101

sets presented in those studies were conformed mostly of non-static gestures that can be easily

classified with IMU only, as shown in [21]. This study, to the best of the author’s knowledge, is the

first one to use IMU data to classify a set of static gestures in a user-independent scenario. When

classifying static gestures, like the ones in this study, one can expect some crosstalk interference,

given the anatomy of the muscles in the forearm as discussed in this chapter. However, by adding

the IMU data, this issue can be avoided to a certain extent. Finally, by using a reduced number of

gestures to classify, it can be observed that the classification performance of all of the classification

methods greatly improved.

www.manaraa.com

Chapter 6

Concluding Remarks

The work presented in this thesis was aimed towards developing a user-independent hand gesture

recognition classification model using IMU and EMG-based sensor fusion techniques. The purpose

of the model was to improve existing user-independent classification models that relied solely on

classifying EMG data. To achieve this goal, each existing user-independent classification model

was compared against each other to find the best model before and after applying the EMG and

IMU sensor fusion techniques. Furthermore, a literature review was performed to identify how

hemiparetic stroke patients can benefit from robot-assisted therapy, and also to determine how

difficult it is to implement EMG wearable devices in this specific population.

User-independent classification methods were created in an attempt to accelerate the pattern

recognition training times for end-users. By doing so, the user’s learning process of the control

of wearable mechatronic devices would be reduced, thus promoting long term adoption of this

technology. However, even though these methods have shown promising results, they are still at

an early stage [114]. This study attempted to enhance some popular user-independent classification

methods, which included some adaptive learning frameworks, by employing data gathered from all

the sensors embedded in the Myo Armband, which is an accessible commercially available device.

The standard methods followed by other pattern recognition algorithms were applied. In this

sense, EMG and IMU data from healthy subjects, who performed 10 hand and finger gestures

under 4 arm positions, were collected and processed, and a set of features was extracted from

these data. Then, existing EMG-based user-independent classification models were improved by

102

www.manaraa.com

6.1 Contributions 103

adding information from the IMU. As a result, accuracies of up to 82.4% were achieved for the best

performing model (Adaptive LS-SVM). Moreover, the classification models were further improved

by reducing the number of gestures to classify. This caused an overall accuracy increase of 12.48%,

12.44%, 16.08%, and 20.23% for the PAC, Adaptive LS-SVM, Bilinear Models based classification

method, and the MLP networks model, respectively.

Additionally, a statistical analysis was performed to compare the effects of adding the IMU data

to each of the user-independent classification models. In general, the majority of the tested models

improved their classification accuracy significantly, the exception being the PAC model that did

not show any signs of improvement. On another note, a second statistical analysis was performed

to compare each user-independent classification model against each other after classifying the

combined EMG and IMU data. The results showed that the Adaptive LS-SVM classification

method outperformed the rest of the tested classification models.

Although this work showed that the classification performance improved on the user-independent

classification methods after adding the information collected from another sensor, there is room

for further improvement.

6.1 Contributions

The contributions of the work presented in this thesis are as follows:

1. A software for collecting data from the Myo Armband was developed. This software allowed

the information from different trials to be collected and stored in a database. A friendly

and intuitive GUI was developed as part of this software. This GUI gives the user complete

control over which gestures to collect, the easiness of collecting data during different arm

positions, and the possibility of re-recording motions without needing to start the trials all

over again. These features give the developed software an advantage over similar software

developed for the Myo Armband.

2. A database of EMG and IMU signals collected from the Myo Armband was developed.

These data are composed of signals collected from 22 able-bodied participants performing

10 gestures in 4 different arm positions. Furthermore, because the gestures used to form

www.manaraa.com

6.2 Limitations and Future Work 104

the database were recorded in intervals of 1 repetition, the total number of motions in the

database is equal to 400 per subject. These data are particularly useful because they allow

the flexibility to observe the effects of having more or fewer information from a specific motion

while developing user-independent classification algorithms. Furthermore, this database can

be used towards the development of more user-independent algorithms based on sensor fusion

techniques. It is possible to make this database publicly available online. This would be a

major contribution given the fact that similar online databases are composed of EMG signals

collected from only 6 gestures [111].

3. A major contribution was the development of a user-independent hand gesture recognition

model using MLP networks and sensor fusion techniques. This model has the advantage of

not requiring a calibration dataset for new users, which is an improvement over the other

methods presented in this work. Such advantage is a step forward towards a zero calibration

phase for the ideal user-independent scenario. Moreover, this classification method was the

second best in terms of classification performance as shown in Section 5.5.2, Figure 5.11.

With a little bit of improvement, this classification method has the potential to enhance the

embodiment of wearable devices during robot-assisted therapies.

4. Another contribution is the statistically significant improvement of the classification perfor-

mance of the adaptive-based user-independent algorithms (the Adaptive LS-SVM and the

Bilinear Models based classification method), and the MLP network classification algorithm

after combining data collected from the EMG and IMU sensors. This opens up the pos-

sibility of exploring the effects of different combinations of sensors on the performance of

user-independent classification algorithms.

6.2 Limitations and Future Work

While sensor fusion techniques were effectively applied to develop and improve user-independent

classification methods, the insight gained from this work indicates that future work can be done to

effectively implement these methods during robot-assisted therapies. Some of the future research

avenues to explore are highlighted below:

www.manaraa.com

6.2 Limitations and Future Work 105

1. Implement sophisticated feature fusion techniques to improve the classification methods. In

general, three types of fusion levels exist: data-level fusion, decision-level fusion, and feature-

level fusion [90]. During data-level fusion, data coming from all sensor modalities are treated

as a single dataset from which features are extracted for future classification. On the other

hand, decision-level fusion refers to the process of separately classifying features from each

sensor modality and then, fusing the outputs of these individual classifiers, using statisti-

cal methods such as Bayesian inference, to make a final class decision [90]. In this work,

feature-level fusion was implemented. Features extracted from each channel of the EMG

were combined with features extracted from the IMU by joining the feature matrices from

each modality. Although effective, the main drawback of this technique is that, in most of

the cases, it requires the use of feature reduction techniques to find an optimal feature subset.

Further research should be directed towards exploring the effects and benefits of these fusion

levels on the classification performance of user-independent classification methods.

2. Real-time performance evaluation. The user-independent classification methods presented in

this work were analyzed offline. This allowed for a performance evaluation using machine

learning metrics such as accuracy, precision and recall values. However, future work should

focus on online analyses and evaluations. Novak and Riener [114] suggested that offline

parameters, such as the signal’s optimal window length, may affect the classification outcomes

when tested online. Therefore, implementation of new types of metrics, outside the scope

of the ones used in traditional machine learning applications, should be considered to asses

the efficacy of different sensors used in a user-independent, multisensor modality scenario.

It should be noted that the outcomes of this work were never tested on an actual wearable

mechatronic device. Therefore, future work should be aimed towards the development of a

system that encompass both hardware and software elements. Such system may be able to

provide new evaluation metrics when tested under real-time conditions.

3. Evaluation on a stroke population. The population used to test the user-independent clas-

sification models presented in this work was composed of healthy subjects. However, future

work should be aimed towards testing these models with a stroke-patient population. It is

www.manaraa.com

6.2 Limitations and Future Work 106

known that stroke patients can present a combination of muscle spasticity and muscle weak-

ness on their paretic limbs [115]. This condition can produce involuntary muscle contractions

that can affect the collected EMG and IMU signals, as well as the motion onset and offset

of each gesture. Therefore, new parameters, such as entropy measurements [116], may be

required to account for involuntary movements that are not unusual on stroke survivors.

4. Improve the data collection protocol. The current data collection protocol can be modified to

collect data from more gestures and add them to the database generated in this work, and also

to collect data from a population of hemiparetic stroke patients. Moreover, the time of the

experimental trials could be reduced. This is especially important when collecting data from

hemiparetic stroke patients as some of them may be at an early rehabilitation stage. Patients

at this stage may present high levels of discomfort when performing motions for prolonged

times. On another note, the GUI developed in this work, which was used during the data

collecting phase, can benefit from a better means for presenting visual data as feedback.

Currently, the EMG signal collected from the Myo Armband is summed across each channel,

and then this signal is rectified, before finally streamed in real time to a computer to be used

as a means for showing the participant that they are performing an isometric contraction.

However, as observed during the experiments, pinch gestures generated signals with small

amplitudes that were hard to visualize for some participants.

5. Train the classifiers using different positions of the Myo Armband. As discussed in Sec-

tions 5.1.3 and 5.3.3, the placement of the sensors of the Myo Armband is greatly influenced

by the circumference of the user’s forearm. In this sense, the sensors of the Myo Armband

cannot be placed on specific muscles because they are restricted to a specific position in the

band. This can introduce some muscle crosstalk in the EMG signal, which affects the classi-

fication performance of the classification models. Therefore, by training the classifiers using

different positions of the Myo Armband, the effect of the crosstalk between muscles could

be reduced. Another potential benefit of varying the position of the band during training, is

that it could be possible to account for a poor optimal sensor placement that might result

from end-users placing the device themselves.

www.manaraa.com

6.2 Limitations and Future Work 107

6. Explore the effects of simultaneously using different user-independent classification methods.

In this work, we used the precision and recall scores to remove gestures from the dataset

in order to boost the classification performance. Further, from the results, it was observed

that different user-independent classification methods achieved different precision and recall

scores for different gestures. This opens up the possibility of having multiple classification

methods running in parallel, each one classifying new incoming data simultaneously. Then, by

using majority voting techniques, the recognition accuracy of the gestures could potentially

increase, and so, the removal of gestures from the dataset would not be necessary to improve

the classification performance. Furthermore, because using multiple classification methods in

parallel will be computationally expensive, there is room for improvement by implementing

sophisticated embedded systems, such as field programmable gate arrays (FPGA), that are

capable of handling this computational load. Nowadays, embedded systems have evolved to

become powerful portable devices, which is why some studies have focused on implementing

them in pattern recognition applications [117, 118].

The purpose of this thesis was to implement user-independent hand gesture recognition classifi-

cation models using IMU and EMG-based sensor fusion techniques. Existing adaptive classification

methods that were aimed towards a user-independent classification model were improved. This

was accomplished by combining all of the information collected from the Myo Armband. The

main objectives of this work, which were to increase the number of gestures that the Myo Arm-

band can recognize while also improving its detection accuracy in a user-independent scenario,

were achieved. In this sense, overall accuracies of up to 84.55% were achieved for a set of 7 ges-

tures. Continued work developing more strategies for using sensor fusion techniques to achieve

better user-independent classifications will be able to promote long term adoption of wearable

mechatronic devices during robot-assisted therapies.

www.manaraa.com

References

[1] W. Johnson, O. Onuma, M. Owolabi, and S. Sachdev, “Stroke: a global response is needed,”
Bulletin of the World Health Organization, vol. 94, no. 9, p. 634, 2016.

[2] S. N. Housley, D. Wu, K. Richards, S. Belagaje, M. Ghovanloo, and A. J. Butler, “Improving
upper extremity function and quality of life with a tongue driven exoskeleton: a pilot study
quantifying stroke rehabilitation,” Stroke Research and Treatment, 2017.

[3] M. E. Stoykov, G. N. Lewis, and D. M. Corcos, “Comparison of bilateral and unilateral
training for upper extremity hemiparesis in stroke,” Neurorehabilitation and Neural Repair,
vol. 23, no. 9, pp. 945–953, 2009.

[4] K. C. Stewart, J. H. Cauraugh, and J. J. Summers, “Bilateral movement training and stroke
rehabilitation: a systematic review and meta-analysis,” Journal of the Neurological Sciences,
vol. 244, no. 1-2, pp. 89–95, 2006.

[5] C. Duret, O. Courtial, A.-G. Grosmaire, and E. Hutin, “Use of a robotic device for the
rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot
interactions and the motor recovery process,” BioMed Research International, vol. 2015,
2015.

[6] M. H. Rahman, M. Saad, J. P. Kenné, and P. S. Archambault, “Nonlinear sliding mode
control implementation of an upper limb exoskeleton robot to provide passive rehabilitation
therapy,” in International Conference on Intelligent Robotics and Applications, (Montreal,
QC, Canada), pp. 52–62, Springer, October 3-5, 2012.

[7] H. S. Lo and S. Q. Xie, “Exoskeleton robots for upper-limb rehabilitation: state of the art
and future prospects,” Medical Engineering & Physics, vol. 34, no. 3, pp. 261–268, 2012.

[8] V. Squeri, A. Basteris, and V. Sanguineti, “Adaptive regulation of assistance ‘as needed’ in
robot-assisted motor skill learning and neuro-rehabilitation,” in IEEE International Confer-
ence on Rehabilitation Robotics, (Zurich, Switzerland), pp. 1–6, June 29-July 1, 2011.

[9] M. Hillman and J. Jepson, “Evaluation of a robotic workstation for the disabled,” Journal
of Biomedical Engineering, vol. 14, no. 3, pp. 187–192, 1992.

[10] T. Proietti, V. Crocher, A. Roby-Brami, and N. Jarrasse, “Upper-limb robotic exoskele-
tons for neurorehabilitation: a review on control strategies,” IEEE Reviews in Biomedical
Engineering, vol. 9, pp. 4–14, 2016.

108

www.manaraa.com

REFERENCES 109

[11] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strategies for robotic move-
ment training after neurologic injury,” Journal of Neuroengineering and Rehabilitation, vol. 6,
no. 1, p. 20, 2009.

[12] M. Baklouti, J. AbouSaleh, E. Monacelli, and S. Couvet, “Human machine interface in
assistive robotics: application to a force controlled upper-limb powered exoskeleton,” in
Robotics 2010 Current and Future Challenges, IntechOpen, 2010.

[13] T. R. Makin, F. de Vignemont, and A. A. Faisal, “Neurocognitive barriers to the embodiment
of technology,” Nature Biomedical Engineering, vol. 1, p. 0014, 2017.

[14] A. Asokan, A. J. Pothen, and R. K. Vijayaraj, “Armatron—a wearable gesture recognition
glove: for control of robotic devices in disaster management and human rehabilitation,” in
IEEE International Conference on Robotics and Automation for Humanitarian Applications
(RAHA), (Kollam, India), pp. 1–5, December 18-20, 2016.

[15] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani, “Gesture-based robot
control with variable autonomy from the jpl biosleeve,” in IEEE International Conference
on Robotics and Automation, (Karlsruhe, Germany), pp. 1160–1165, May 6-10, 2013.

[16] Q. Meng, Q. Meng, H. Yu, and X. Wei, “A survey on sEMG control strategies of wearable
hand exoskeleton for rehabilitation,” in IEEE 2nd Asia-Pacific Conference on Intelligent
Robot Systems (ACIRS), (Wuhan, China), pp. 165–169, June 16-18, 2017.

[17] “Myo gesture control armband—wearable technology by thalmic labs.” Retrieved from:
https://www.myo.com/.

[18] A.-A. Samadani and D. Kulic, “Hand gesture recognition based on surface electromyogra-
phy,” in 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, (Chicago, IL, USA), pp. 4196–4199, August 26-30, 2014.

[19] F. Kerber, M. Puhl, and A. Krüger, “User-independent real-time hand gesture recognition
based on surface electromyography,” in Proceedings of the 19th International Conference on
Human-Computer Interaction with Mobile Devices and Services, (Vienna, Austria), p. 36,
ACM, September 04-07, 2017.

[20] M. E. Benalcázar, C. Motoche, J. A. Zea, A. G. Jaramillo, C. E. Anchundia, P. Zambrano,
M. Segura, F. B. Palacios, and M. Pérez, “Real-time hand gesture recognition using the
myo armband and muscle activity detection,” in IEEE Second Ecuador Technical Chapters
Meeting (ETCM), pp. 1–6, 2017.

[21] M. Georgi, C. Amma, and T. Schultz, “Fusion and comparison of IMU and EMG signals for
wearable gesture recognition,” in International Joint Conference on Biomedical Engineering
Systems and Technologies, (Lisbon, Portugal), pp. 308–323, Springer, January 12-15, 2015.

[22] S. Jiang, B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng, and P. B. Shull, “Feasibility of
wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU sensing,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3376–3385, 2017.

https://www.myo.com/

www.manaraa.com

REFERENCES 110

[23] Q. Huang, D. Yang, L. Jiang, H. Zhang, H. Liu, and K. Kotani, “A novel unsupervised adap-
tive learning method for long-term electromyography (EMG) pattern recognition,” Sensors,
vol. 17, no. 6, p. 1370, 2017.

[24] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept
drift adaptation,” ACM Computing Surveys (CSUR), vol. 46, no. 4, p. 44, 2014.

[25] D. Ducharme, L. Costa, L. DiPippo, and L. Hamel, “SVM constraint discovery using KNN
applied to the identification of cyberbullying,” in Proceedings of the International Conference
on Data Mining (DMIN), (Las Vegas, Nevada, USA), pp. 111–117, The Steering Committee
of The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), July 17-20, 2017.

[26] Y. Kijima and S. F. Viegas, “Wrist anatomy and biomechanics,” The Journal of Hand
Surgery, vol. 34, no. 8, pp. 1555–1563, 2009.

[27] D. C. Moore, J. J. Crisco, T. G. Trafton, and E. L. Leventhal, “A digital database of wrist
bone anatomy and carpal kinematics,” Journal of Biomechanics, vol. 40, no. 11, pp. 2537–
2542, 2007.

[28] V. Squeri, L. Masia, P. Giannoni, G. Sandini, and P. Morasso, “Wrist rehabilitation in
chronic stroke patients by means of adaptive, progressive robot-aided therapy,” Transactions
on Neural Systems and Rehabilitation Engineering, vol. 22, no. 2, pp. 312–325, 2013.

[29] R. L. Linscheid, “Kinematic considerations of the wrist,” Clinical Orthopaedics and Related
Research, no. 202, pp. 27–39, 1986.

[30] D. Bourbonnais and S. V. Noven, “Weakness in patients with hemiparesis,” American Jour-
nal of Occupational Therapy, vol. 43, no. 5, pp. 313–319, 1989.

[31] M. Pekna, M. Pekny, and M. Nilsson, “Modulation of neural plasticity as a basis for stroke
rehabilitation,” Stroke, vol. 43, no. 10, pp. 2819–2828, 2012.

[32] D. C. Boone and S. P. Azen, “Normal range of motion of joints in male subjects,” The
Journal of Bone and Joint Surgery, vol. 61, no. 5, pp. 756–759, 1979.

[33] J. Van Der Lee, H. Beckerman, D. Knol, H. De Vet, and L. Bouter, “Clinimetric properties
of the motor activity log for the assessment of arm use in hemiparetic patients,” Stroke,
vol. 35, no. 6, pp. 1410–1414, 2004.

[34] E. Taub and D. M. Morris, “Constraint-induced movement therapy to enhance recovery after
stroke,” Current Atherosclerosis Reports, vol. 3, no. 4, pp. 279–286, 2001.

[35] B. H. Dobkin, “Strategies for stroke rehabilitation,” The Lancet Neurology, vol. 3, no. 9,
pp. 528–536, 2004.

[36] J. Whitall, S. M. Waller, K. H. Silver, and R. F. Macko, “Repetitive bilateral arm train-
ing with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke,”
Stroke, vol. 31, no. 10, pp. 2390–2395, 2000.

www.manaraa.com

REFERENCES 111

[37] S. M. Waller and J. Whitall, “Bilateral arm training: why and who benefits?,” NeuroReha-
bilitation, vol. 23, no. 1, pp. 29–41, 2008.

[38] G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of robot-assisted therapy on upper limb
recovery after stroke: a systematic review,” Neurorehabilitation and Neural Repair, vol. 22,
no. 2, pp. 111–121, 2008.

[39] M. J. Johnson, “Recent trends in robot-assisted therapy environments to improve real-life
functional performance after stroke,” Journal of NeuroEngineering and Rehabilitation, vol. 3,
no. 1, p. 29, 2006.

[40] A. Kyrylova, “Development of a wearable mechatronic elbow brace for postoperative motion
rehabilitation,” Master’s thesis, The University of Western Ontario, 2015.

[41] A. Basteris, S. M. Nijenhuis, A. H. Stienen, J. H. Buurke, G. B. Prange, and F. Amirab-
dollahian, “Training modalities in robot-mediated upper limb rehabilitation in stroke: a
framework for classification based on a systematic review,” Journal of Neuroengineering and
Rehabilitation, vol. 11, no. 1, p. 111, 2014.

[42] G. Turchetti, N. Vitiello, S. Romiti, E. Geisler, and S. Micera, “Why effectiveness of robot-
mediated neurorehabilitation does not necessarily influence its adoption,” IEEE Reviews in
Biomedical Engineering, vol. 7, pp. 143–153, 2014.

[43] F. Ryser, T. Bützer, J. P. Held, O. Lambercy, and R. Gassert, “Fully embedded myoelec-
tric control for a wearable robotic hand orthosis,” in IEEE International Conference on
Rehabilitation Robotics, (London, UK), pp. 615–621, July 17-20, 2017.

[44] Y. Zhang and C. Harrison, “Tomo: wearable, low-cost electrical impedance tomography
for hand gesture recognition,” in Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, pp. 167–173, ACM, 2015.

[45] S. Wilson and R. Vaidyanathan, “Upper-limb prosthetic control using wearable multichannel
mechanomyography,” in IEEE International Conference on Rehabilitation Robotics, (Lon-
don, UK), pp. 1293–1298, July 17-20, 2017.

[46] G. P. Sadarangani, X. Jiang, L. A. Simpson, J. J. Eng, and C. Menon, “Force myography
for monitoring grasping in individuals with stroke with mild to moderate upper-extremity
impairments: a preliminary investigation in a controlled environment,” Frontiers in bioengi-
neering and biotechnology, vol. 5, p. 42, 2017.

[47] X. Zhang, Y. Li, X. Chen, G. Li, W. Z. Rymer, and P. Zhou, “The effect of involuntary
motor activity on myoelectric pattern recognition: a case study with chronic stroke patients,”
Journal of Neural Engineering, vol. 10, no. 4, p. 046015, 2013.

[48] P.-G. Jung, G. Lim, S. Kim, and K. Kong, “A wearable gesture recognition device for
detecting muscular activities based on air-pressure sensors,” IEEE Transactions on Industrial
Informatics, vol. 11, no. 2, pp. 485–494, 2015.

[49] B. Noronha, S. Dziemian, G. A. Zito, C. Konnaris, and A. A. Faisal, “‘Wink to
grasp’—comparing eye, voice & EMG gesture control of grasp with soft-robotic gloves,” in

www.manaraa.com

REFERENCES 112

IEEE International Conference on Rehabilitation Robotics, (London, UK), pp. 1043–1048,
July 17-20, 2017.

[50] E. Zheng, Q. Wang, and H. Qiao, “A preliminary study of upper-limb motion recognition
with noncontact capacitive sensing,” in International Conference on Intelligent Robotics and
Applications, (Wuhan, China), pp. 251–261, Springer, August 16-18, 2017.

[51] N. Haroon and A. N. Malik, “Multiple hand gesture recognition using surface EMG signals,”
Journal of Biomedical Engineering and Medical Imaging, vol. 3, no. 1, p. 1, 2016.

[52] M. F. Wahid, R. Tafreshi, M. Al-Sowaidi, and R. Langari, “Subject-independent hand gesture
recognition using normalization and machine learning algorithms,” Journal of Computational
Science, vol. 27, pp. 69–76, 2018.

[53] A. S. Kundu, O. Mazumder, P. K. Lenka, and S. Bhaumik, “Hand gesture recognition based
omnidirectional wheelchair control using IMU and EMG sensors,” Journal of Intelligent &
Robotic Systems, vol. 91, no. 3-4, pp. 529–541, 2018.

[54] E. J. Rechy-Ramirez and H. Hu, “Bio-signal based control in assistive robots: a survey,”
Digital Communications and Networks, vol. 1, no. 2, pp. 85–101, 2015.

[55] M. A. Oskoei and H. Hu, “Myoelectric control systems—a survey,” Biomedical Signal Pro-
cessing and Control, vol. 2, no. 4, pp. 275–294, 2007.

[56] L. Sörnmo and P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Ap-
plications, vol. 8. Elsevier Academic Press, 2005.

[57] D. Gabriel and G. Kamen, Essentials of Electromyography. Champaign, IL: Human Kinetics,
2010.

[58] M. B. I. Reaz, M. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis: detec-
tion, processing, classification and applications,” Biological Procedures Online, vol. 8, no. 1,
p. 11, 2006.

[59] J. Wang, L. Tang, and J. E. Bronlund, “Surface EMG signal amplification and filtering,”
International Journal of Computer Applications, vol. 82, no. 1, 2013.

[60] J. Potvin and S. Brown, “Less is more: high pass filtering, to remove up to 99% of the surface
EMG signal power, improves EMG-based biceps brachii muscle force estimates,” Journal of
Electromyography and Kinesiology, vol. 14, no. 3, pp. 389–399, 2004.

[61] P. W. Hodges and B. H. Bui, “A comparison of computer-based methods for the determi-
nation of onset of muscle contraction using electromyography,” Electroencephalography and
Clinical Neurophysiology/Electromyography and Motor Control, vol. 101, no. 6, pp. 511–519,
1996.

[62] J. Abbnik, A. Van Der Bilt, and H. Van Der Glas, “Detection of onset and termination of
muscle activity in surface electromyograms,” Journal of Oral Rehabilitation, vol. 25, no. 5,
pp. 365–369, 1998.

www.manaraa.com

REFERENCES 113

[63] P. Bonato, T. D’Alessio, and M. Knaflitz, “A statistical method for the measurement of
muscle activation intervals from surface myoelectric signal during gait,” IEEE Transactions
on Biomedical Engineering, vol. 45, no. 3, pp. 287–299, 1998.

[64] M. Lidierth, “A computer based method for automated measurement of the periods of mus-
cular activity from an EMG and its application to locomotor EMGs,” Electroencephalography
and Clinical Neurophysiology, vol. 64, no. 4, pp. 378–380, 1986.

[65] S. Solnik, P. Rider, K. Steinweg, P. DeVita, and T. Hortobágyi, “Teager–kaiser energy
operator signal conditioning improves EMG onset detection,” European Journal of Applied
Physiology, vol. 110, no. 3, pp. 489–498, 2010.

[66] M. Reis, C. Almeida, and R. M. Rocha, “On the performance of surface electromyography-
based onset detection methods with real data in assistive technologies,” Multimedia Tools
and Applications, vol. 77, no. 9, pp. 11491–11520, 2018.

[67] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction myoelectric
control,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 1, pp. 82–94, 1993.

[68] M. A. Oskoei and H. Hu, “Support vector machine-based classification scheme for myoelectric
control applied to upper limb,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 8,
pp. 1956–1965, 2008.

[69] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, “Classification of the myoelectric
signal using time-frequency based representations,” Medical Engineering & Physics, vol. 21,
no. 6-7, pp. 431–438, 1999.

[70] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction and selection for
EMG signal classification,” Expert Systems with Applications, vol. 39, no. 8, pp. 7420–7431,
2012.

[71] K. Englehart, B. Hudgins, et al., “A robust, real-time control scheme for multifunction
myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 7, pp. 848–
854, 2003.

[72] Z. Qingju and L. Zhizeng, “Wavelet de-noising of electromyography,” in IEEE International
Conference on Mechatronics and Automation, (Luoyang, Henan, China), pp. 1553–1558,
June 25-28, 2006.

[73] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector ma-
chines,” IEEE Intelligent Systems and Their Applications, vol. 13, no. 4, pp. 18–28, 1998.

[74] F. Amirabdollahian and M. L. Walters, “Application of support vector machines in detecting
hand grasp gestures using a commercially off the shelf wireless myoelectric armband,” in
IEEE International Conference on Rehabilitation Robotics, (London, UK), pp. 111–115, July
17-20, 2017.

[75] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural
Processing Letters, vol. 9, no. 3, pp. 293–300, 1999.

www.manaraa.com

REFERENCES 114

[76] H. Wang and D. Hu, “Comparison of SVM and LS-SVM for regression,” in IEEE Inter-
national Conference on Neural Networks and Brain, vol. 1, (Beijing, China), pp. 279–283,
IEEE, October 13-15, 2005.

[77] A. A. M. Lima, R. M. Araujo, F. A. G. dos Santos, V. H. Yoshizumi, F. K. de Barros,
D. H. Spatti, L. H. Liboni, and M. E. Dajer, “Classification of hand movements from EMG
signals using optimized MLP,” in IEEE International Joint Conference on Neural Networks
(IJCNN), (Rio de Janeiro, Brazil), pp. 1–7, July 8-13, 2018.

[78] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[79] B. Khanna, S. Moses, and M. Nirmala, “Softmax based user attitude detection algorithm
for sentimental analysis,” Procedia Computer Science, vol. 125, pp. 313–320, 2018.

[80] S. S. Haykin, Neural networks: a comprehensive foundation. Upper Saddle River, N.J:
Prentice Hall, 2nd ed., 1999.

[81] T. Tommasi, F. Orabona, C. Castellini, and B. Caputo, “Improving control of dexterous
hand prostheses using adaptive learning,” IEEE Transactions on Robotics, vol. 29, no. 1,
pp. 207–219, 2013.

[82] T. Matsubara and J. Morimoto, “Bilinear modeling of EMG signals to extract user-
independent features for multiuser myoelectric interface,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 8, pp. 2205–2213, 2013.

[83] J. B. Tenenbaum and W. T. Freeman, “Separating style and content with bilinear models,”
Neural Computation, vol. 12, no. 6, pp. 1247–1283, 2000.

[84] P. Visconti, F. Gaetani, G. Zappatore, and P. Primiceri, “Technical features and function-
alities of myo armband: an overview on related literature and advanced applications of
myoelectric armbands mainly focused on arm prostheses,” International Journal on Smart
Sensing and Intelligent Systems, vol. 11, no. 1, pp. 1–25, 2018.

[85] M. Tomaszewski, “Myo SDK matlab MEX wrapper,” 2016. Retrieved from: https://

github.com/mark-toma/MyoMex.

[86] V. Montoya-Leal, A. Orozco-Duque, J. Ugarte, M. Portela, J. Franco, and V. Perez, “As-
sessment protocol of wrist flexion and extension to support processes in occupational health
using myo armband,” in VII Latin American Congress on Biomedical Engineering CLAIB,
pp. 585–588, Springer, 2017.

[87] A. Fougner, E. Scheme, A. D. Chan, K. Englehart, and Ø. Stavdahl, “Resolving the limb
position effect in myoelectric pattern recognition,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 19, no. 6, pp. 644–651, 2011.

[88] B. Knorr, R. Hughes, D. Sherrill, J. Stein, M. Akay, and P. Bonato, “Quantitative measures of
functional upper limb movement in persons after stroke,” in IEEE 2nd International EMBS
Conference on Neural Engineering, (Arlington, VA, USA), pp. 252–255, March 16-19, 2005.

[89] J. Drapa la, K. Brzostowski, A. Szpala, and A. Rutkowska-Kucharska, “Two stage EMG
onset detection method,” Archives of Control Sciences, vol. 22, no. 4, pp. 427–440, 2012.

https://github.com/mark-toma/MyoMex
https://github.com/mark-toma/MyoMex

www.manaraa.com

REFERENCES 115

[90] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fusion in body sensor
networks: State-of-the-art and research challenges,” Information Fusion, vol. 35, pp. 68–80,
2017.

[91] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,” Expert
Systems with Applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[92] B. Schölkopf, “The kernel trick for distances,” in Advances in Neural Information Processing
Systems, pp. 301–307, 2001.

[93] J. M. Phillips and S. Venkatasubramanian, “A gentle introduction to the kernel distance,”
arXiv preprint arXiv:1103.1625, 2011.

[94] S. Raschka, “Model evaluation, model selection, and algorithm selection in machine learn-
ing,” arXiv preprint arXiv:1811.12808, 2018.

[95] J. G. Colli-Alfaro, A. Ibrahim, and A. L. Trejos, “Design of user-independent hand gesture
recognition using multilayer perceptron networks and sensor fusion techniques,” in IEEE 16th
International Conference on Rehabilitation Robotics, (Toronto, Ontario, Canada), pp. 1103–
1108, June 24-28, 2019.

[96] B. P. Livingston, R. L. Segal, A. Song, K. Hopkins, A. W. English, and C. C. Manning,
“Functional activation of the extensor carpi radialis muscles in humans,” Archives of Physical
Medicine and Rehabilitation, vol. 82, no. 9, pp. 1164–1170, 2001.

[97] G. H. Golub and C. F. Van Loan, Matrix computations. The Jhons Hopkins University Press,
4th ed., 2013.

[98] G. C. Cawley, “Leave-one-out cross-validation based model selection criteria for weighted LS-
SVMs,” in IEEE International Joint Conference on Neural Network Proceedings, (Vancouver,
BC, Canada), pp. 1661–1668, July 16-21, 2006.

[99] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.
Software available from https://www.tensorflow.org/.

[100] Python Software Foundation, “Python language reference.” Version 3.6. Available at http:
//www.python.org.

[101] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[102] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

https://www.tensorflow.org/
http://www.python.org
http://www.python.org

www.manaraa.com

REFERENCES 116

[103] A. Zell, G. Mamier, M. Vogt, N. Mache, R. Hübner, S. Döring, K.-U. Herrmann, T. Soyez,
M. Schmalzl, T. Sommer, et al., “SNNS: Stuttgart neural network simulator,” Institute for
Parallel and Distributed High Performance Systems, Technical Report, vol. 95, no. 6, 1998.
User Manual, Version 4.2.

[104] RStudio Team, “RStudio: integrated development environment for R,” 2015. Version 1.1.463
Available at http://www.rstudio.com/.

[105] C. Bergmeir and J. M. Beńıtez, “Neural networks in R using the stuttgart neural network
simulator: RSNNS,” 2018. Retrieved from: https://github.com/cbergmeir/RSNNS.

[106] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. J. Schwab,
“A high-bias, low-variance introduction to machine learning for physicists,” Physics Reports,
2019.

[107] R. Chowdhury, M. Reaz, M. Ali, A. Bakar, K. Chellappan, and T. Chang, “Surface
electromyography signal processing and classification techniques,” Sensors, vol. 13, no. 9,
pp. 12431–12466, 2013.

[108] A. J. Young, L. J. Hargrove, and T. A. Kuiken, “The effects of electrode size and orienta-
tion on the sensitivity of myoelectric pattern recognition systems to electrode shift,” IEEE
Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2537–2544, 2011.

[109] A. Ishii, T. Kondo, and S. Yano, “Improvement of EMG pattern recognition by eliminat-
ing posture-dependent components,” in International Conference on Intelligent Autonomous
Systems, (Shanghai, China), pp. 19–30, Springer, July 3-7, 2016.

[110] Y. Zhang, Y. Chen, H. Yu, X. Yang, W. Lu, and H. Liu, “Wearing-independent hand gesture
recognition method based on EMG armband,” Personal and Ubiquitous Computing, vol. 22,
no. 3, pp. 511–524, 2018.

[111] U. C. Allard, F. Nougarou, C. L. Fall, P. Giguère, C. Gosselin, F. Laviolette, and B. Gosselin,
“A convolutional neural network for robotic arm guidance using sEMG based frequency-
features,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
(Daejeon, South Korea), pp. 2464–2470, October 9-14, 2016.

[112] X. Zhai, B. Jelfs, R. H. Chan, and C. Tin, “Self-recalibrating surface EMG pattern recogni-
tion for neuroprosthesis control based on convolutional neural network,” Frontiers in Neu-
roscience, vol. 11, p. 379, 2017.

[113] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A framework for hand gesture
recognition based on accelerometer and EMG sensors,” IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, vol. 41, no. 6, pp. 1064–1076, 2011.

[114] D. Novak and R. Riener, “A survey of sensor fusion methods in wearable robotics,” Robotics
and Autonomous Systems, vol. 73, pp. 155–170, 2015.

[115] X. Hu, K. Tong, X. Wei, W. Rong, E. Susanto, and S. Ho, “The effects of post-stroke
upper-limb training with an electromyography (EMG)-driven hand robot,” Journal of Elec-
tromyography and Kinesiology, vol. 23, no. 5, pp. 1065–1074, 2013.

http://www.rstudio.com/
https://github.com/cbergmeir/RSNNS

www.manaraa.com

REFERENCES 117

[116] X. Zhang and P. Zhou, “High-density myoelectric pattern recognition toward improved stroke
rehabilitation,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 6, pp. 1649–1657,
2012.

[117] H. Wöhrle, M. Tabie, S. Kim, F. Kirchner, and E. Kirchner, “A hybrid FPGA-based system
for EEG-and EMG-based online movement prediction,” Sensors, vol. 17, no. 7, p. 1552, 2017.

[118] D. De Venuto and G. Mezzina, “Neuromuscular disorders assessment by FPGA-based SVM
classification of synchronized EEG/EMG,” in International Conference on Applications in
Electronics Pervading Industry, Environment and Society, (Pisa, Italy), pp. 37–44, Springer,
September 26-27, 2018.

[119] A. D. Chan and G. C. Green, “Myoelectric control development toolbox,” CMBES Proceed-
ings, vol. 30, 2007.

www.manaraa.com

Appendix A

Permissions and Approvals

A.1 Ethics Approval

118

www.manaraa.com

A.1 Ethics Approval 119

www.manaraa.com

A.2 Permission for Figure 2.1 120

A.2 Permission for Figure 2.1

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 1/6

ELSEVIER LICENSE
TERMS AND CONDITIONS

Jul 02, 2019

This Agreement between Western University -- Jose Colli Alfaro ("You") and Elsevier
("Elsevier") consists of your license details and the terms and conditions provided by
Elsevier and Copyright Clearance Center.

License Number 4621030266028

License date Jul 02, 2019

Licensed Content Publisher Elsevier

Licensed Content Publication Journal of Biomechanics

Licensed Content Title A digital database of wrist bone anatomy and carpal kinematics

Licensed Content Author Douglas C. Moore,Joseph J. Crisco,Theodore G. Trafton,Evan L.
Leventhal

Licensed Content Date Jan 1, 2007

Licensed Content Volume 40

Licensed Content Issue 11

Licensed Content Pages 6

Start Page 2537

End Page 2542

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Format both print and electronic

Are you the author of this
Elsevier article?

No

Will you be translating? No

Original figure numbers Figure 1

Title of your
thesis/dissertation

Implementation of User-Independent Hand Gesture Recognition
Classification Models Using IMU and EMG-based Sensor Fusion
Techniques

Expected completion date Aug 2019

Estimated size (number of
pages)

180

Requestor Location Western University
1151 Richmond St

London, ON N6A 3K7
Canada
Attn: Western University

Publisher Tax ID GB 494 6272 12

Total 0.00 CAD

Terms and Conditions

www.manaraa.com

A.2 Permission for Figure 2.1 121

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 2/6

INTRODUCTION
1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source. If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made
to any Lancet figures/tables and they must be reproduced in full.
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted. Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted. Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.

www.manaraa.com

A.2 Permission for Figure 2.1 122

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 3/6

12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
terms and conditions. These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction. In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you. Notice of such denial will be made using the contact information provided by you.
Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper-text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password-protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available

www.manaraa.com

A.2 Permission for Figure 2.1 123

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 4/6

version. Please note that Cell Press, The Lancet and some society-owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author-
incorporated changes suggested during submission, peer review and editor-author
communications.
Authors can share their accepted author manuscript:

immediately
via their non-commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional
uses or as part of an invitation-only research collaboration work-group
directly by providing copies to their students or to research collaborators for
their personal use
for private scholarly sharing as part of an invitation-only work group on
commercial sites with which Elsevier has an agreement

After the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

link to the formal publication via its DOI
bear a CC-BY-NC-ND license - this is easy to do
if aggregated with other manuscripts, for example in a repository or other site, be
shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value-adding publishing activities including peer review co-ordination, copy-editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full-text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author-selected end-user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.

www.manaraa.com

A.2 Permission for Figure 2.1 124

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 5/6

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.
Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.
CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

Associating advertising with the full text of the Article
Charging fees for document delivery or access
Article aggregation
Systematic distribution via e-mail lists or share buttons

www.manaraa.com

A.2 Permission for Figure 2.1 125

7/2/2019 RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=14469fdf-c093-4968-99ec-7284c663a310 6/6

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.

www.manaraa.com

Appendix B

MATLAB Code

B.1 Data Processing Codes

B.1.1 Extract Subject Data Code

1 %% Setup

2 clc; clear ; close all;

3

4 winSize = .250; %segment 's windows size in s

5 winOverlap = .125; %window overlap (about 50% of windows size) in s

6 deadzone = 0.02;

7

8 % featsEMG = [];

9 % featsIMU = [];

10 % featsIMU1 = [];

11 % featsIMU2 = [];

12 % gest_labels = [];

13

14

15 aa = [];

16 aaimu = [];

17

18 %% Read Data

19 subjectID = [2:7 9:16]; % UNCOMENT TO GENERATE FEATURE MATRICES

20 for gg = subjectID % UNCOMENT TO GENERATE FEATURE MATRICES

21

22 % gg = 25; % COMENT TO GENERATE FEATURE MATRICES

126

www.manaraa.com

B.1 Data Processing Codes 127

23 dataFile = fullfile('Z:\Memo\Data\',sprintf('S_%d',gg),sprintf('expData_S%d.mat',gg));

24

25

26 workspaceVariable = sprintf('gestFeatures_S%d',gg);

27 dataFullFileName = fullfile('Z:\Memo\Feature Matrices ',workspaceVariable);

28

29 % CLEAR VALUES HERE

30 featsEMG_Train = [];

31 featsIMU_Train = [];

32 featsIMU1_Train = [];

33 featsIMU2_Train = [];

34 gest_labels_Train = [];

35

36 featsEMG_Test = [];

37 featsIMU_Test = [];

38 featsIMU1_Test = [];

39 featsIMU2_Test = [];

40 gest_labels_Test = [];

41

42 % if exist([dataFullFileName '.mat '],'file ')

43 % load([dataFullFileName '.mat ']);

44 % else

45 emgFeats_all_Tr = [];

46 imuFeats2_all_Tr = [];

47 fusedFeats_all_Tr = [];

48 emgFeats_all_Tst = [];

49 imuFeats2_all_Tst = [];

50 fusedFeats_all_Tst = [];

51 % end

52

53 load(dataFile);

54 for gestName = ["Wrist Flexion","Wrist Extension","Wrist Pronation","Wrist Supination ","

Wrist Aduction","Wrist Abduction ","Hand Fist","Hand Open","Precision Pinch","Key Pinch

"]

55

56 switch gestName

57 case "Wrist Flexion"

58 gesture = 1;

59 case "Wrist Extension"

60 gesture = 2;

61 case "Wrist Pronation"

www.manaraa.com

B.1 Data Processing Codes 128

62 gesture = 3;

63 case "Wrist Supination"

64 gesture = 4;

65 case "Wrist Aduction"

66 gesture = 5; % Radial Deviation

67 case "Wrist Abduction"

68 gesture = 6; % Ulnar Deviation

69 case "Hand Fist"

70 gesture = 7;

71 case "Hand Open"

72 gesture = 8;

73 case "Precision Pinch"

74 gesture = 9;

75 case "Key Pinch"

76 gesture = 10;

77 end

78 % gesture = 4; % debug line

79

80 for kk = 1:4 % Arm Position

81 % kk = 3; % Debug line

82 % rng(1); % comment after debuging

83 order1 = randperm (10); % Randomize order of repetitions

84 cont = 1;

85

86 for ii = order1 % Repetition

87 % ii = 7;% debug line

88 if ~isempty(dataExp{ii,gesture ,kk}) %gesture

89 timeEMG_log = dataExp{ii,gesture ,kk}{1 ,1};

90 emg_log = dataExp{ii,gesture ,kk}{1 ,2};

91 timeIMU_log = dataExp{ii,gesture ,kk}{1 ,3};

92 imu_log = dataExp{ii,gesture ,kk}{1 ,4};

93 end

94 % =============== CODE HERE =======================

95 % tic

96 [feats ,~,~,feats_imu2 ,labels ,actarea ,actareaimu] = main_loop(gesture ,timeEMG_log ,

emg_log ,timeIMU_log ,imu_log ,winSize ,winOverlap ,deadzone);

97 % [feats ,~,~,feats_imu2 ,labels ,actarea] = main_loop(gesture ,timeEMG_log ,emg_log ,

timeIMU_log ,imu_log);

98 % featsEMG = [featsEMG;feats];

99 % %featsIMU = [featsIMU;feats_imu];

100 % %featsIMU1 = [featsIMU1;feats_imu1];

www.manaraa.com

B.1 Data Processing Codes 129

101 % featsIMU2 = [featsIMU2;feats_imu2];

102 % gest_labels = [gest_labels;labels];

103

104

105 if cont > 8

106 featsEMG_Test = [featsEMG_Test;feats];

107 %featsIMU_Test = [featsIMU_Test;feats_imu];

108 %featsIMU1_Test = [featsIMU1_Test;feats_imu1];

109 featsIMU2_Test = [featsIMU2_Test;feats_imu2];

110 gest_labels_Test = [gest_labels_Test;labels];

111 else

112 featsEMG_Train = [featsEMG_Train;feats];

113 %featsIMU_Train = [featsIMU_Train;feats_imu];

114 %featsIMU1_Train = [featsIMU1_Train;feats_imu1];

115 featsIMU2_Train = [featsIMU2_Train;feats_imu2];

116 gest_labels_Train = [gest_labels_Train;labels];

117 end

118 cont = cont +1;

119

120 aa = [aa;actarea];

121 aaimu = [aaimu;actareaimu];

122

123 % toc

124 % ===

125 end

126 % plotStudyData2(dataExp ,gesture ,kk,aa ,aaimu)

127 aa = [];

128 aaimu = [];

129 end

130 end

131

132 % emgFeats = [featsEMG ,gest_labels];

133 % imuFeats2 = [featsIMU2 ,gest_labels];

134 % fusedFeats = [featsEMG ,featsIMU2 ,gest_labels];

135 %

136 % emgFeats_all = [emgFeats_all;emgFeats];

137 % imuFeats2_all = [imuFeats2_all;imuFeats2];

138 % fusedFeats_all = [fusedFeats_all;fusedFeats];

139

140 emgFeatsTr = [featsEMG_Train ,gest_labels_Train];

141 imuFeats2Tr = [featsIMU2_Train ,gest_labels_Train];

www.manaraa.com

B.1 Data Processing Codes 130

142 fusedFeatsTr = [featsEMG_Train ,featsIMU2_Train ,gest_labels_Train];

143

144 emgFeatsTst = [featsEMG_Test ,gest_labels_Test];

145 imuFeats2Tst = [featsIMU2_Test ,gest_labels_Test];

146 fusedFeatsTst = [featsEMG_Test ,featsIMU2_Test ,gest_labels_Test];

147

148 emgFeats_all_Tr = [emgFeats_all_Tr;emgFeatsTr];

149 imuFeats2_all_Tr = [imuFeats2_all_Tr;imuFeats2Tr];

150 fusedFeats_all_Tr = [fusedFeats_all_Tr;fusedFeatsTr];

151

152 emgFeats_all_Tst = [emgFeats_all_Tst;emgFeatsTst];

153 imuFeats2_all_Tst = [imuFeats2_all_Tst;imuFeats2Tst];

154 fusedFeats_all_Tst = [fusedFeats_all_Tst;fusedFeatsTst];

155

156 % save([dataFullFileName '.mat '],'emgFeats_all_Tr ','imuFeats2_all_Tr ','fusedFeats_all_Tr ','

emgFeats_all_Tst ','imuFeats2_all_Tst ','fusedFeats_all_Tst ');

157

158

159 end % UNCOMENT TO GENERATE FEATURE MATRICES

B.1.2 Main Routine Code

1 function [features , featuresIMU , featuresIMU1 , featuresIMU2 , labels , active_area ,

active_areaIMU] = main_loop(gesture ,timeEMG ,channels ,timeIMU ,imu_log ,winSize ,winOverlap

,deadzone)

2 noSegmentation = 0;

3

4 if(nargin < 8)

5 deadzone = 0.02;

6 if (nargin < 7)

7 winOverlap = .125;

8 if (nargin < 6)

9 noSegmentation = 1;

10 end

11 end

12 end

13

14

15 test_time = ceil(length(timeEMG)/200); %time duration of data acquisition in seconds

16 fs = length(timeEMG)/test_time; %real sampling frequency UNCOMMENT LINE

17

18

www.manaraa.com

B.1 Data Processing Codes 131

19 test_time_IMU = ceil(length(timeIMU)/50); %time duration of data acquisition in seconds

20 fs_IMU = length(timeIMU)/test_time_IMU; %real sampling frequency UNCOMMENT LINE

21

22

23 %% Conditioning

24

25 gyro = imu_log (: ,5:7);

26 acc = imu_log (: ,8:10);

27

28 signal = [gyro ,acc];

29

30 % Because the timestamp on both timeEMG and timeIMU are different , we have

31 % to make them similar by substracting the first value from timeEMG and

32 % timeIMU from their respective vectors

33 timeEMG = timeEMG - timeEMG (1);

34 timeIMU = timeIMU - timeIMU (1);

35

36 %% Preprocessing

37 emgsignal = emgFilter(channels , fs); % EMG filter

38 IMU_signal_filt = imuFilter(signal ,fs_IMU); % IMU filter (Remove 'gravity ' (DC component)

from the acceleration data)

39

40 % ==

41 % We will have to upsample the IMU signal so we can later fuse the

42 % feature vectors

43

44 % Upsample method one: repeat sample values

45 imuUp1 = (IMU_signal_filt (:)).';

46 imuUp1 = reshape(repmat(imuUp1 ,[4 1]),size(IMU_signal_filt ,1)*4,size(IMU_signal_filt ,2));

47

48 % Upsample method two: interpolate using a cubic spline

49 imuUp2 = interp1(timeIMU ,IMU_signal_filt ,timeEMG ,'spline ');

50

51 % ==

52 [ema , emga] = emgEnergy_test(emgsignal ,fs); % Compute the Energy Moving Average

53 [onEMG ,active_area] = onsetDetection_test(ema);

54

55 if length(onEMG)> 1200 || isempty(onEMG) % length bigger than 6 seconds UNCOMMENT LINE

56 onEMG = 800:1650;

57 active_area = [onEMG (1);onEMG(end)];

58 end % UNCOMMENT LINE

www.manaraa.com

B.1 Data Processing Codes 132

59

60 emgsignal_active = emgsignal(onEMG ,:);

61

62 % ==

63 idx = timeEMG(active_area);

64 active_areaIMU = zeros(size(active_area));

65

66 for ii = 1: length(idx)

67 temp = find(timeIMU >= idx(ii));

68 active_areaIMU(ii) = temp (1);

69 end

70

71

72 cont = (active_areaIMU (2:2: end)-active_areaIMU (1:2:end -1))+1; % Se suma 1 para obtener el

rango completo. Eg: [1:22]. El rango de valores es de 22 sin embargo , si restamos 22-1,

obtendremos 21 por lo tanto para obtener el rango hay que sumarle 1 al resultado

73 check1 = reshape(active_areaIMU ,2,[]);

74

75 rows_size = sum(cont);

76 idx1 = cumsum(cont);

77

78 onIMU = zeros(rows_size ,1);

79

80 temp1 = 1;

81

82 for ii = 1:size(check1 ,2)

83 onIMU(temp1:idx1(ii)) = check1(1,ii):check1(2,ii);

84 temp1 = idx1(ii)+1;

85 end

86

87 IMU_active = IMU_signal_filt(onIMU ,:); % Non upsampled signal

88 IMU_active1 = imuUp1(onEMG ,:); % Upsampled signal method 1. We use same active

area as EMG b/c both signals have the same sampling rate now

89 IMU_active2 = imuUp2(onEMG ,:); % Upsampled signal method 2. We use same active

area as EMG b/c both signals have the same sampling rate now

90

91 %% Feature Extraction

92 if isempty(emgsignal_active)

93 features = [];

94 labels = [];

95 active_area = [0;0];

www.manaraa.com

B.1 Data Processing Codes 133

96 active_areaIMU = [0;0];

97 return

98 end

99 if ~noSegmentation

100 % ==

101 winIncrement = winSize -winOverlap;

102 win_size = ceil(winSize*fs);

103 win_inc = ceil(winIncrement*fs);

104 win_sizeIMU = ceil(winSize*fs_IMU);

105 win_incIMU = ceil(winIncrement*fs_IMU);

106

107 features = extract_feature(emgsignal_active ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "MAVS" "WL" "ZC" "AR"]);

108 featuresIMU = extract_feature(IMU_active ,'winSize ',win_sizeIMU ,'winInc ',win_incIMU ,'

Features ' ,["MAV" "WL"]);

109 featuresIMU1 = extract_feature(IMU_active1 ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "WL"]); % We use the same parameters as with the EMG signal b/c

both signals have the same sampling rate now

110 featuresIMU2 = extract_feature(IMU_active2 ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "WL"]); % We use the same parameters as with the EMG signal b/c

both signals have the same sampling rate now

111 else

112 features = extract_feature(emgsignal_active ,'Features ' ,["MAV" "WL" "ZC" "AR"]);

113 featuresIMU = extract_feature(IMU_active ,'Features ' ,["MAV" "WL"]);

114 featuresIMU1 = extract_feature(IMU_active1 ,'Features ' ,["MAV" "WL"]); % We use the same

parameters as with the EMG signal b/c both signals have the same sampling rate now

115 featuresIMU2 = extract_feature(IMU_active2 ,'Features ' ,["MAV" "WL"]); % We use the same

parameters as with the EMG signal b/c both signals have the same sampling rate now

116 end

117

118 labels = ones(size(features ,1) ,1).* gesture;

119

120 end

B.1.3 Signal Filtering Codes

1 function [processed_signal] = emgFilter(signal , fs)

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4

5 %% DC -Offset Removal

6 DCfilterEMG = signal -mean(signal);

www.manaraa.com

B.1 Data Processing Codes 134

7

8 %% Stop -Band Filter (Notch Filter)

9 fo = 60;

10 qf = 30; % Quality factor set to 30 to have a bandwith of 2 Hz

11 wo = fo/(fs/2);

12 bw = wo/qf;

13 [b,a] = iirnotch(wo ,bw);

14

15 processed_signal = filtfilt(b,a,DCfilterEMG);

16

17 %% High -Pass Filter

18 fo = 20;

19 wo = fo/(fs/2);

20 [b,a] = butter(4,wo ,'high');

21 processed_signal = filtfilt(b,a,processed_signal);

22 end

1 function [processed_signal] = imuFilter(signal , fs)

2 %% Band -Pass Filter (4th Order Butterworth Filter)

3

4 fcl = 0.2; %0.2 Hz cutoff frequency

5 fch = 15;

6

7 [b,a] = butter (4,[fcl ,fch]/(fs/2),'bandpass '); %4th order butterworth

8

9 processed_signal = filtfilt(b,a,signal);

10

11

12 end

B.1.4 Signal Conditioning Codes

1 function [emg_energy , emg_average] = emgEnergy_test(x,fs)

2 useTKEO = 1;

3 if nargin < 2

4 useTKEO = 0;

5 end

6

7 [data , Nsignals] = size(x);

8

9 % Use TKEO before averaging

10 if useTKEO == 1

www.manaraa.com

B.1 Data Processing Codes 135

11 emg_average = tkeo(x,fs);

12 else

13 emg_average = x;

14 end

15

16

17 emg_average = mean(emg_average ,2);

18

19 emg_average2 = emg_average .^2;

20

21 emg_average = [0; emg_average; 0] ;

22

23 windowSize = 60;

24 b = (1/ windowSize)*ones(1, windowSize);

25 a = 1;

26

27 emg_energy = filter(b,a,emg_average2);

28

29 emg_energy = sqrt(emg_energy);

30 emg_energy = [0; emg_energy; 0];

31 end

1 function [emg_conditioned] = tkeo(x,fs)

2

3 TKEO = x(2:end -1,:).^2 - x(3:end ,:) .* x(1:end -2,:);

4

5 %%

6 % Butterworth Filter

7 fc = 50; %5 Hz cutoff frequency

8

9 [b,a] = butter(4,fc/(fs/2)); %4th order butterworth

10

11 emg_conditioned = filtfilt(b,a,TKEO);

12

13 emg_conditioned = abs(emg_conditioned);

14

15

16 end

B.1.5 Onset Detection Code

1 function [onEMG ,check] = onsetDetection_test(emg_energy)

www.manaraa.com

B.1 Data Processing Codes 136

2 l = size(emg_energy ,1);

3 check = zeros(l,1);

4

5

6 function [pkthOn , pkthOff ,P1] = peakDetection(emg_energy)

7 ematst = emg_energy; %ema (5000: end);

8

9 th = max(ematst)*0.1; % 0.1

10 [pks ,locs_Swave] = findpeaks(ematst ,'MinPeakHeight ',th,'MinPeakDistance ' ,100);

11

12

13 pkthOn = mean(pks) * 0.2; % 0.1

14 pkthOff = pkthOn *0.6;

15

16 Fs = 200; % Sampling frequency

17 T = 1/Fs; % Sampling period

18 L = length(ematst); % Length of signal

19 Y = fft(ematst);

20 P2 = abs(Y/L);

21 P1 = P2(1: floor(L/2+1));

22 P1(2:end -1) = 2*P1(2:end -1);

23 end

24

25 [pkthOn , pkthOff , P1] = peakDetection(emg_energy);

26 aux = 0;

27 cont = 0;

28

29

30 % Data with length less than 100 ms is considered spurious due to the

31 % electromechanical delay of the muscles

32 st = 1;

33 en = length(emg_energy);

34 for ii = st: en

35 if (emg_energy(ii) >= pkthOn)

36 if (aux == 0)

37 ta = ii;

38 aux = 1;

39 end

40 end

41 if (aux == 1)

42 if (emg_energy(ii) <= pkthOff || ii == length(emg_energy))

www.manaraa.com

B.1 Data Processing Codes 137

43 if (cont >= 750) % 20 samples = 100 ms at 200 Hz %Test with 750 samples: (3/4)

of 5 secs

44 check(ta) = 1;

45 check(ii -1) = 1;

46 end

47 aux = 0;

48 cont = 0;

49 else

50 cont = cont + 1;

51 end

52 end

53 end

54

55

56 % ==

57 % % % Code used to find the active area between '1':

58 % % % For example: [0 0 0 1 0 0 0 0 1 0 0 0 0] -> [0 0 0 1 1 1 1 1 1 0 0 0 0]

59 % ==

60

61 check = find(check == 1);

62 length_check = length(check);

63 if mod(length_check ,2) ~= 0

64 check = [check ,length(emg_energy)];

65 end

66

67 cont = (check (2:2: end)-check (1:2:end -1))+1; % We add 1 to obtaine the complete range.

68 check1 = reshape(check ,2,[]);

69

70 rows_size = sum(cont);

71 idx1 = cumsum(cont);

72

73 onEMG = zeros(rows_size ,1);

74

75 temp1 = 1;

76

77 for ii = 1:size(check1 ,2)

78 onEMG(temp1:idx1(ii)) = check1(1,ii):check1(2,ii);

79 temp1 = idx1(ii)+1;

80 end

81

82 end

www.manaraa.com

B.2 Feature Extraction Codes 138

B.2 Feature Extraction Codes

The code used for feature extraction from the EMG and IMU signal is presented in this section.

To optimize the computational speed, feature matrices where prepared for vectorization. Some of

the utilized code is based on a previous work presented in [119].

B.2.1 Vectorization Code

1 %

2 % EXTRACT_FEATURE Extracts features from signal.

3 %

4 % [feature ,seg_raw_data] = extract_feature(data ,win_size ,win_inc , deadzone)

5 %

6 % Author Jose Guillermo Colli Alfaro

7 %

8 % This function extracts features from the signal contained in data ,

9 % which are stored in columns.

10 %

11 % The signals in data are divided into multiple windows of size

12 % win_size and the windows are space win_inc apart.

13 %

14 % A variable numwin is created to reshape the matrix data into a new

15 % matrix VECTDATA of size [win_size size(data ,2)*numwin]. This new

16 % matrix is used as an input for the functions that compute the features

17 % of the EMG signal.

18 %

19 % Features are computed using Vectorization.

20 %

21 % 2018/04/23 Memo: First created

22 % 2018/04/24 Memo: Added code for reshaping vectdata

23 % 2018/11/22 Memo: Modified function to compute any feature. Added RMS

24 % feature calculation

25 % 2019/05/28 Memo: Added option to return segmented raw data

26

27 % function feature = extract_feature(data ,win_size ,win_inc ,varargin)

28 function [feature , seg_raw_data] = extract_feature(data ,varargin)

29 defaultFeatures = ["MAV" "MAVS" "WL" "ZC" "AR"];

30 defaultDeadzone = 0.02;

31 defaultAROrder = 4;

32 defaultWinSize = size(data ,1);

www.manaraa.com

B.2 Feature Extraction Codes 139

33 defaultWinInc = 1;

34

35 p = inputParser;

36 addRequired(p,'data');

37 % addRequired(p,'win_size ');

38 % addRequired(p,'win_inc ');

39 addParameter(p,'winSize ',defaultWinSize);

40 addParameter(p,'winInc ',defaultWinInc);

41 addParameter(p,'Features ',defaultFeatures);

42

43 %% Add parameters here:

44 % addParameter(p,'Parameter_Name ',Default_parameter_value)

45 addParameter(p,'Deadzone ',defaultDeadzone);

46 addParameter(p,'arOrder ',defaultAROrder);

47

48 %% DO NOT MODIFY

49 % parse(p,data ,win_size ,win_inc ,varargin {:});

50 parse(p,data ,varargin {:});

51

52 %% Assign parameters to variables here:

53 % var_name = p.Results.Parameter_Name

54 feats = p.Results.Features;

55 deadzone = p.Results.Deadzone;

56 ar_order = p.Results.arOrder;

57 win_size = p.Results.winSize; % Test

58 win_inc = p.Results.winInc; % Test

59

60 %% DO NOT MODIFY

61 % Manipulate Data matrix for vectorization

62 [datasize , Nsignals] = size(data);

63 temp = 0: win_inc :(datasize -win_size); % Create temporal vector that will allow us to get

the index of matrix Data

64 temp1 = 1: win_size; % Vector that will be sumed to temp vector to obtain index of matrix

Data

65

66 idx = temp1+temp.'; % index matrix

67 idx = idx '; %transpose matrix and then ...

68 idx = idx (:); %... unroll parameters % 2018/04/24 Memo: probably this step is not

necessary

69

70 vectdata = data(idx ,:); %Create vectorized matrix

www.manaraa.com

B.2 Feature Extraction Codes 140

71 seg_raw_data = vectdata; % Backup vectada , will be used later

72 numwin = size(vectdata ,1)/win_size; %obtain #of windows in the vectorized matrix , there may

be data loss if module(winsize/wininc) ~= 0

73

74 % This section is used to create a matrix which contains the index of the

75 % values in vectdata. This index matrix will be used to reshape the matrix

76 % vectdata so it can be further analyzed used vectorization. reshape

77 % function was not used because the way it sorted the columns

78

79 idxvector = 1:numel(vectdata); % Create a vector which values range from 1 to the # of

elements in vectdata

80 idxvector = reshape(idxvector ,size(vectdata)); % Reshape the vector into a matrix of the

same size as vectdata

81 out = idxvector (1: win_size:end ,:); % take every 'numwin ' rows of idx vector

82 temp = reshape(out ',[Nsignals*numwin 1]).'; % row -wise reshaping into a vector

83 temp1 = (0:(win_size -1)) '; % Vector that will be sumed to temp vector to obtain index of

matrix vectdata

84 idxmat = temp+temp1; % index matrix

85 vectdata = vectdata(idxmat); % vectadata now reshaped and ready to be used for

vectorization

86

87 % --

88 % Initialize variable to Preallocate Memory

89 temp = size(feats ,2);

90

91 %% Add any constraints here:

92 % E.g., AR features will return 1* ar_order

93 % features , this will affect the size of the final feature array.

94 % Therefore , we increase the size of our final array by ar_order -1.

95 % If ar_order = 4, then the columns of our final array should look

96 % something like this:

97 % [AR AR1 AR2 AR3]; where AR1 ,AR2 ,AR3 are the 3 extra columns

98 % added to the original vector size

99

100 % Blank sample function:

101 % if (any(feats == "Feature_Name "))

102 % temp = temp + (feature_constraint - 1);

103 % end

104

105 if (any(feats == "AR"))

106 temp = temp + (ar_order - 1);

www.manaraa.com

B.2 Feature Extraction Codes 141

107 end

108

109 %% DO NOT MODIFY

110 % Preallocate Memory and initialize index variable

111 feature = zeros(numwin ,Nsignals*temp);

112 idx = 1;

113

114 %% Add functions for calculating new features here:

115 for ii = feats

116 switch ii

117 % Blank sample function:

118 % case 'Feature_Name '

119 % feat = your_feature_function

120 % feature(:,idx:(idx+size(feat ,2) -1)) = feat; % DO NOT DELETE

121 % idx = idx+size(feat ,2); % DO NOT DELETE

122 case 'MAV'

123 [feat , ~] = getmavfeat_test(vectdata ,Nsignals ,numwin);

124 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

125 idx = idx+size(feat ,2);

126 case 'MAVS'

127 [~, feat] = getmavfeat_test(vectdata ,Nsignals ,numwin);

128 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

129 idx = idx+size(feat ,2);

130 case 'WL'

131 feat = getwlfeat_test(vectdata ,Nsignals ,numwin);

132 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

133 idx = idx+size(feat ,2);

134 case 'ZC'

135 [feat] = getzcfeat_test(vectdata ,deadzone ,win_size ,Nsignals ,numwin);

136 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

137 idx = idx+size(feat ,2);

138 case 'AR'

139 feat = getarfeat_test(vectdata ,ar_order ,Nsignals ,numwin);

140 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

141 idx = idx+size(feat ,2);

142 case 'RMS'

143 feat = getrmsfeat_test(vectdata ,Nsignals ,numwin);

144 feature(:,idx:(idx+size(feat ,2) -1)) = feat;

145 idx = idx+size(feat ,2);

146 case 'MEAN'

147 feat = getmeanfeat_test(vectdata ,Nsignals ,numwin);

www.manaraa.com

B.2 Feature Extraction Codes 142

148 feature(:,idx:(idx+size(feat ,2) -1)) = feat; % DO NOT DELETE

149 idx = idx+size(feat ,2); % DO NOT DELETE

150 case 'STD'

151 feat = getstdfeat_test(vectdata ,Nsignals ,numwin);

152 feature(:,idx:(idx+size(feat ,2) -1)) = feat; % DO NOT DELETE

153 idx = idx+size(feat ,2); % DO NOT DELETE

154 end

155 end

156

157 % Test Matrix ... YOU CAN IGNORE THIS

158 % Add the new computed feature to this matrix

159 % feature = [MAV MAVS WL ZC AR1 AR2 AR3 AR4 RMS]

160 % feature = [feature1 feature2 feature3 feature4 feature5 feature6];

161

162 end

B.2.2 MAV and MAVS Features Code

1 function [feat , feat2] = getmavfeat_test(x,nsignals ,nwindows)

2 %UNTITLED2 Summary of this function goes here

3 % Detailed explanation goes here

4

5 % allocate memory

6 % feat = zeros(nwindows ,nsignals);

7

8 feat = mean(abs(x));

9 feat = (reshape(feat , [nsignals ,nwindows])).';

10

11 % feat2 = [diff(feat); zeros(1,nsignals)];

12 feat2 = diff([feat;feat(end ,:)]);

13 end

B.2.3 WL Feature Code

1 function feat = getwlfeat_test(x,nsignals ,nwindows)

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4

5 feat = sum(abs(diff(x)));

6 feat = (reshape(feat , [nsignals ,nwindows])).';

7

8 end

www.manaraa.com

B.2 Feature Extraction Codes 143

B.2.4 ZC Feature Code

1 function [feat] = getzcfeat_test(x,deadzone ,winsize ,nsignals ,nwindows)

2 %UNTITLED2 Summary of this function goes here

3 % Detailed explanation goes here

4

5

6 y = (x > deadzone) - (x < -deadzone);

7

8 % % forces the zeros towards either the positive or negative

9 % % the filter is chosen so that the most recent +1 or -1 has

10 % % the most influence on the state of the zero.

11 a=1;

12 b=exp(-(1: winsize /2)) ';

13 z = filter(b,a,y);

14

15

16 z = (z > 0) - (z < -0);

17 dz = diff(z);

18

19 feat = (sum(abs(dz)==2));

20 feat = (reshape(feat , [nsignals ,nwindows])).';

21

22 % C = sign(x(1:end -1,:) .* x(2:end ,:));

23 % C(C~=-1)=0;

24 % C = abs(C);

25 %

26 % A = abs(x(1:end -1,:) - x(2:end ,:));

27 %

28 % y = sign(C);

29 % y(y~=-1)=0;

30 % z(z<= deadzone)=0;

31 % z(z>deadzone)=1;

32 % dz = (-y)&z;

33 % feat2 = sum(dz);

34 % feat2 = (reshape(feat2 , [nsignals ,nwindows])).';

35

36

37 end

B.2.5 AR Coefficients Feature Code

www.manaraa.com

B.2 Feature Extraction Codes 144

1 function feat = getarfeat_test(x,order ,nsignals ,nwindows)

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4

5 % While aryule might be more accurate , lpc is faster for computing the

6 % autoregressive coefficients. Theorethically , the computed values are the

7 % same. The might be different by a couple of decimals

8

9 % ar = aryule(x,order) '; % transpose b/c the parameters along the nth row of 'ar ' model the

nth column of x

10 % feat = reshape(ar(2:end ,:),nsignals*order*nwindows ,1) ';

11

12 cur_xlpc = real(lpc(x,order) ');

13 feat = reshape(cur_xlpc (2:end ,:),nsignals*order*nwindows ,1) ';

14

15 feat = (reshape(feat , [nsignals*order ,nwindows])).';

16

17 end

B.2.6 Mean Feature Code

1 function [feat] = getmeanfeat_test(x,nsignals ,nwindows)

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4 feat = mean(x);

5 feat = (reshape(feat , [nsignals ,nwindows])).'; % DO NOT DELETE

6

7 end

B.2.7 Std Feature Code

1 function [feat] = getstdfeat_test(x,nsignals ,nwindows)

2 %UNTITLED2 Summary of this function goes here

3 % Detailed explanation goes here

4

5 feat = std(x);

6 feat = (reshape(feat , [nsignals ,nwindows])).';

7 end

B.2.8 RMS Feature Code

1 function feat = getrmsfeat_test(x,nsignals ,nwindows)

www.manaraa.com

B.3 Feature Normalization Code 145

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4

5 % feat = sqrt(mean(x.^2));

6 feat = rms(x);

7 feat = (reshape(feat , [nsignals ,nwindows])).';

8

9 end

B.3 Feature Normalization Code

1 function [x_norm , x_norm2 , mu , sigma] = featureNormalize(x, mu, sigma)

2 %FEATURENORMALIZE Normalizes the features in X

3 % FEATURENORMALIZE(X) returns a normalized version of X where

4 % the mean value of each feature is 0 and the standard deviation

5 % is 1. This is often a good preprocessing step to do when

6 % working with learning algorithms.

7

8 if nargin < 2

9 mu = mean(x);

10 x_norm = x - mu;

11

12 sigma = std(x_norm);

13 x_norm = x_norm ./ sigma;

14 else

15 x_norm = (x - mu)./ sigma;

16 end

17

18

19 % Change the range between -1 and 1

20 x_norm2 = 2.*((x_norm - min(x_norm ,[] ,1))./(max(x_norm ,[],1)-min(x_norm ,[] ,1))) -1;

21 end

B.4 Feature Reduction Code

1 function [Z, K, U, maxVar] = projectData(X, K, U)

2 %PROJECTDATA Computes the reduced data representation when projecting only

3 %on to the top k eigenvectors

4 % Z = projectData(X, K, U) computes the projection of

5 % the normalized inputs X into the reduced dimensional space spanned by

6 % the first K columns of U. It returns the projected examples in Z.

www.manaraa.com

B.4 Feature Reduction Code 146

7 %

8

9 findK = 0;

10 computeU = 0;

11 if nargin < 3

12 computeU = 1;

13 if nargin < 2

14 K = size(X,2);

15 findK = 1;

16 end

17 end

18

19 % Useful values

20 [m, n] = size(X);

21

22 if computeU

23 % Compute covariance matrix Sigma

24 Sigma = (X' * X) / (m-1);

25

26 % Compute eigenvectors of matrix Sigma

27 [U, S, V] = svd(Sigma);

28

29 % Obtain variances

30 idx = find(S);

31 den = sum(S(idx));

32 temp = cumsum(S(idx))./den;

33

34 % ===

35 % ========= COMMENT THIS CODE IF ALREADY KNOW THE VALUE OF K ============

36 % ===

37

38 if findK

39 % Use singular value matrix S to compute the # of principal components K.

40

41 % Matrix S is a diagonal matrix that contains the square roots of the

42 % non -zero eigenvalues of both Sigma '*Sigma and Sigma*Simga ', where

43 % Sigma ' is the conjugate transpose of Sigma.

44

45 % idx = find(S);

46 % den = sum(S(idx));

47 % temp = cumsum(S(idx))./den;

www.manaraa.com

B.5 Classification Codes 147

48 K = find(temp >=0.95); % Find K so that reduced matrix retains 99% variance

49

50 % If K = 0, then reduce varaince tolerance up to 90% MAX. If K is still

51 % zero , then it is not possible to reduce the matrix

52

53 if isempty(K)

54 K = find(temp >=0.95);

55 if isempty(K)

56 K = find(temp >=0.90);

57 if isempty(K)

58 K = n;

59 end

60 end

61 end

62

63 K = min(K);

64

65 end

66

67 % ===

68

69 maxVar = temp(K);

70 end

71

72 Z = X * U(:, 1:K);

73

74

75 end

B.5 Classification Codes

B.5.1 LS-SVM Code

1 % featMatID = 2;

2 reduce = 1; %'1' or '0'

3 znorm = 0;

4 remove_gests = 1;

5

6 for featMatID = 1:2

7 for subID = [2:7 ,9:20 ,22:25] %[2:7 ,9:16]

8 workspaceVariable = sprintf('gestFeatures_S%d',subID);

www.manaraa.com

B.5 Classification Codes 148

9 dataFullFileName = fullfile('Z:\Memo\Feature Matrices ',workspaceVariable);

10 load(dataFullFileName);

11 switch featMatID

12 case 1

13 featMat = [fusedFeats_all_Tr; fusedFeats_all_Tst];

14 if remove_gests == 1

15 featMat = reduce_data(featMat);

16 end

17

18 if znorm == 1

19 [feature_norm3 ,~] = featureNormalize(featMat (:,1:end -1));

20 else

21 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

22 end

23 fileName = 'fusedFeats ';

24 if exist('bestcAll ', 'var')

25 C = bestcAll;%2

26 gamma = bestgAll; %0.5

27 else

28 C = 2;

29 gamma = 0.5;

30 end

31 case 2

32 featMat = [emgFeats_all_Tr; emgFeats_all_Tst];

33 if remove_gests == 1

34 featMat = reduce_data(featMat);

35 end

36

37 if znorm == 1

38 [feature_norm3 ,~,mu,sigma] = featureNormalize(featMat (:,1:end -1));

39 else

40 [~,feature_norm3 ,mu,sigma] = featureNormalize(featMat (:,1:end -1));

41 end

42

43 fileName = 'emgFeats ';

44 if exist('bestc ', 'var')

45 C = bestc;%2

46 gamma = bestg; %0.5

47 else

48 C = 2;

49 gamma = 0.5;

www.manaraa.com

B.5 Classification Codes 149

50 end

51 case 3

52 featMat = [imuFeats2_all_Tr; imuFeats2_all_Tst];

53 if remove_gests == 1

54 featMat = reduce_data(featMat);

55 end

56 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

57 fileName = 'imu2Feats ';

58 end

59

60 if reduce == 1

61 featPCA2 = projectData(feature_norm3 ,17);

62 else

63 featPCA2 = feature_norm3;

64 end

65

66 Y = featMat(:,end);

67

68 nLab = numel(unique(Y));

69 Yi = Y;

70

71 % Kernel Matrix

72 K = rbfKernel(featPCA2 ,featPCA2 ,gamma);

73 H = K; H(1: size(K,1) +1:end) = H(1: size(K,1)+1:end)+(1/C);

74

75 alphas = zeros(size(H,1),nLab);

76 betas = zeros(nLab ,1);

77

78 Ev = ones(size(H,1) ,1);

79

80

81 % Cholesky factorization

82 R = chol(H,'lower ');

83

84 labels = unique(Y);

85 for ii = 1:nLab

86 Yi(Y==ii) = 1;

87 Yi(Y~=ii) = -1;

88

89 % Solve for eta (n) in H*eta = 1. Use the Cholesky factor of H

90 eta = R.'\(R\Ev);

www.manaraa.com

B.5 Classification Codes 150

91

92 % Solve for nu (v) in H*nu = y. Use the Cholesky factor of H

93 nu = R.'\(R\Yi);

94

95 betas(ii) = (Ev.'*nu)/(Ev.'*eta);

96 alphas(:,ii) = nu - (eta*betas(ii));

97 end

98

99 switch featMatID

100 case 1

101 if reduce == 1

102 if znorm == 1

103 LSSVM_Mdl_EMGIMU_znorm.eta = eta;

104 LSSVM_Mdl_EMGIMU_znorm.nu = nu;

105 LSSVM_Mdl_EMGIMU_znorm.betas = betas;

106 LSSVM_Mdl_EMGIMU_znorm.alphas = alphas;

107 LSSVM_Mdl_EMGIMU_znorm.datTr = featPCA2; %featPCA2

108 LSSVM_Mdl_EMGIMU_znorm.C = C;

109 LSSVM_Mdl_EMGIMU_znorm.gamma = gamma;

110

111 save(dataFullFileName ,'LSSVM_Mdl_EMGIMU_znorm ','-append ');

112 else

113 LSSVM_Mdl_EMGIMU_7_gest.eta = eta;

114 LSSVM_Mdl_EMGIMU_7_gest.nu = nu;

115 LSSVM_Mdl_EMGIMU_7_gest.betas = betas;

116 LSSVM_Mdl_EMGIMU_7_gest.alphas = alphas;

117 LSSVM_Mdl_EMGIMU_7_gest.datTr = featPCA2; %featPCA2

118 LSSVM_Mdl_EMGIMU_7_gest.C = C;

119 LSSVM_Mdl_EMGIMU_7_gest.gamma = gamma;

120

121 save(dataFullFileName ,'LSSVM_Mdl_EMGIMU_7_gest ','-append ');

122 end

123

124 else

125 LSSVM_Mdl_EMGIMU_NoPCA.eta = eta;

126 LSSVM_Mdl_EMGIMU_NoPCA.nu = nu;

127 LSSVM_Mdl_EMGIMU_NoPCA.betas = betas;

128 LSSVM_Mdl_EMGIMU_NoPCA.alphas = alphas;

129 LSSVM_Mdl_EMGIMU_NoPCA.datTr = featPCA2; %featPCA2

130 LSSVM_Mdl_EMGIMU_NoPCA.C = C;

131 LSSVM_Mdl_EMGIMU_NoPCA.gamma = gamma;

www.manaraa.com

B.5 Classification Codes 151

132 save(dataFullFileName ,'LSSVM_Mdl_EMGIMU_NoPCA ','-append ');

133 end

134 case 2

135 if reduce == 1

136 if znorm == 1

137 LSSVM_Mdl_EMG_znorm.eta = eta;

138 LSSVM_Mdl_EMG_znorm.nu = nu;

139 LSSVM_Mdl_EMG_znorm.betas = betas;

140 LSSVM_Mdl_EMG_znorm.alphas = alphas;

141 LSSVM_Mdl_EMG_znorm.datTr = featPCA2; %featPCA2

142 LSSVM_Mdl_EMG_znorm.C = C;

143 LSSVM_Mdl_EMG_znorm.gamma = gamma;

144

145 save(dataFullFileName ,'LSSVM_Mdl_EMG_znorm ','-append ');

146 else

147 LSSVM_Mdl_EMG_7_gest.eta = eta;

148 LSSVM_Mdl_EMG_7_gest.nu = nu;

149 LSSVM_Mdl_EMG_7_gest.betas = betas;

150 LSSVM_Mdl_EMG_7_gest.alphas = alphas;

151 LSSVM_Mdl_EMG_7_gest.datTr = featPCA2; %featPCA2

152 LSSVM_Mdl_EMG_7_gest.C = C;

153 LSSVM_Mdl_EMG_7_gest.gamma = gamma;

154

155 save(dataFullFileName ,'LSSVM_Mdl_EMG_7_gest ','-append ');

156 end

157 else

158 LSSVM_Mdl_EMG_NoPCA.eta = eta;

159 LSSVM_Mdl_EMG_NoPCA.nu = nu;

160 LSSVM_Mdl_EMG_NoPCA.betas = betas;

161 LSSVM_Mdl_EMG_NoPCA.alphas = alphas;

162 LSSVM_Mdl_EMG_NoPCA.datTr = featPCA2; %featPCA2

163 LSSVM_Mdl_EMG_NoPCA.C = C;

164 LSSVM_Mdl_EMG_NoPCA.gamma = gamma;

165 save(dataFullFileName ,'LSSVM_Mdl_EMG_NoPCA ','-append ');

166 end

167 case 3

168 LSSVM_Mdl_IMU.eta = eta;

169 LSSVM_Mdl_IMU.nu = nu;

170 LSSVM_Mdl_IMU.betas = betas;

171 LSSVM_Mdl_IMU.alphas = alphas;

172 LSSVM_Mdl_IMU.datTr = featPCA2; %featPCA2

www.manaraa.com

B.5 Classification Codes 152

173 LSSVM_Mdl_IMU.C = C;

174 LSSVM_Mdl_IMU.gamma = gamma;

175 save(dataFullFileName ,'LSSVM_Mdl_IMU ','-append ');

176 end

177 end

178 end

B.5.1.1 Predict LS-SVM Code

1 function [Ys ,pred ,KK] = predLSSVM(datTst ,varargin)

2 %UNTITLED5 Summary of this function goes here

3 % Detailed explanation goes here

4 defaultModel = [];

5 defaultdatTr = [];

6 defaultAlpha = [];

7 defaultBeta = [];

8 defaultGamma = [];

9

10 validStruct = @(x) isstruct(x);

11

12 p = inputParser;

13 addRequired(p,'datTst ');

14 addOptional(p,'dataTr ',defaultdatTr);

15 addOptional(p,'alpha ',defaultAlpha);

16 addOptional(p,'beta',defaultBeta);

17 addOptional(p,'gam',defaultGamma);

18 addParameter(p,'Model ',defaultModel ,validStruct);

19

20 parse(p,datTst ,varargin {:});

21 Mdl = p.Results.Model;

22 datTr = p.Results.dataTr;

23 alphas = p.Results.alpha;

24 betas = p.Results.beta;

25 gamma = p.Results.gam;

26

27 %%

28

29 if ~isempty(Mdl)

30 KK = rbfKernel(datTst ,Mdl.datTr ,Mdl.gamma);

31 Y = (Mdl.alphas).'*KK.';

32 % Ys = sign(Ys+Mdl.betas);

33 Y = Y+Mdl.betas;

www.manaraa.com

B.5 Classification Codes 153

34 else

35 if isempty(datTr) || isempty(alphas) || isempty(betas) || isempty(gamma)

36 error('Not enough input arguments ')

37 end

38 KK = rbfKernel(datTst ,datTr ,gamma);

39 Y = (alphas).'*KK.';

40 Y = Y+betas;

41 end

42

43

44

45 [~,p2]=max(Y);

46 pred = p2.';

47 lab = (1: size(Y,1)).';

48 G = length(lab);

49 N = length(p2);

50

51 Ys = repmat(lab , [1 N]);

52 Ys = Ys== repmat(p2 ,[G 1]);

53 Ys = double(Ys);

54 Ys(Ys==0) = -1;

55

56 end

B.5.1.2 Get LS-SVM Parameters Code

1 function [R,alphas ,betas] = findSVMParam(H,Y,varargin)

2 %UNTITLED Summary of this function goes here

3 % Detailed explanation goes here

4 defaultChol = 'upper ';

5

6 p = inputParser;

7 addRequired(p,'H');

8 addRequired(p,'Y');

9 % addRequired(p,'win_inc ');

10 addParameter(p,'cholFac ',defaultChol);

11

12 parse(p,H,Y,varargin {:});

13

14 cholFactor = p.Results.cholFac;

15

16 %%

www.manaraa.com

B.5 Classification Codes 154

17 nLab = numel(unique(Y));

18 Yi = Y;

19 alphas = zeros(size(H,1),nLab);

20 betas = zeros(nLab ,1);

21

22 Ev = ones(size(H,1) ,1);

23

24 if cholFactor == "lower"

25 % Cholesky factorization

26 R = chol(H,'lower ');

27

28 labels = unique(Y);

29 for ii = 1:nLab

30 Yi(Y==ii) = 1;

31 Yi(Y~=ii) = -1;

32

33 % Solve for eta (n) in H*eta = 1. Use the Cholesky factor of H

34 eta = R.'\(R\Ev);

35

36 % Solve for nu (v) in H*nu = y. Use the Cholesky factor of H

37 nu = R.'\(R\Yi);

38

39 betas(ii) = (Ev.'*nu)/(Ev.'*eta);

40 alphas(:,ii) = nu - (eta*betas(ii));

41 end

42 else

43 % Cholesky factorization

44 R = chol(H);

45

46 labels = unique(Y);

47 for ii = 1:nLab

48 Yi(Y==ii) = 1;

49 Yi(Y~=ii) = -1;

50

51 % Solve for eta (n) in H*eta = 1. Use the Cholesky factor of H

52 eta = R\(R.'\Ev);

53

54 % Solve for nu (v) in H*nu = y. Use the Cholesky factor of H

55 nu = R\(R.'\Yi);

56

57 betas(ii) = (Ev.'*nu)/(Ev.'*eta);

www.manaraa.com

B.5 Classification Codes 155

58 alphas(:,ii) = nu - (eta*betas(ii));

59 end

60 end

61 end

B.5.1.3 Compute RBF Kernel Code

1 function sim = rbfKernel(X, Y, gamma)

2 %RBFKERNEL returns a radial basis function kernel between X and Y

3 % sim = gaussianKernel(X, Y) returns a gaussian kernel between X and Y

4 % and returns the value in sim. RBF is computed using vectorization

5

6 sim = exp(-gamma .* pdist2(X,Y,'euclidean ').^2);

7

8 end

B.5.2 PAC Code

1 function [accEMG ,accEMGIMU ,preds] = particleAdaptiveClass(subjects ,mdlID ,cont ,reduce)

2 %UNTITLED3 Summary of this function goes here

3 % Detailed explanation goes here

4 accEMGIMU = zeros(size(subjects));

5 accEMG = zeros(size(subjects));

6 preds = cell(2,numel(subjects));

7

8

9 for jj = 1: length(subjects)

10 subID = subjects(jj);

11 for featMatID = 1:2

12 switch featMatID

13 case 1

14 % load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID

)) ,...

15 % 'fusedFeats_all_Tr ','fusedFeats_all_Tst ','LSSVM_Mdl_EMGIMU ','

LSSVM_Mdl_EMGIMU_NoPCA ');

16 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID))

,...

17 'fusedFeats_all_Tr ','fusedFeats_all_Tst ','LSSVM_Mdl_EMGIMU_7_gest ','

LSSVM_Mdl_EMGIMU_NoPCA ');

18

19 featMat = [fusedFeats_all_Tr; fusedFeats_all_Tst];

20 featMat = reduce_data(featMat); % Uncomment if testing for 7 gestures

www.manaraa.com

B.5 Classification Codes 156

21

22 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

23 if reduce == 1

24 % mdlName = 'LSSVM_Mdl_EMGIMU ';

25 mdlName = 'LSSVM_Mdl_EMGIMU_7_gest ';

26 else

27 mdlName = 'LSSVM_Mdl_EMGIMU_NoPCA ';

28 end

29 case 2

30 % load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID

)) ,...

31 % 'emgFeats_all_Tr ','emgFeats_all_Tst ','LSSVM_Mdl_EMG ','

LSSVM_Mdl_EMG_NoPCA ');

32 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID))

,...

33 'emgFeats_all_Tr ','emgFeats_all_Tst ','LSSVM_Mdl_EMG_7_gest ','

LSSVM_Mdl_EMG_NoPCA ');

34

35 featMat = [emgFeats_all_Tr; emgFeats_all_Tst];

36 featMat = reduce_data(featMat); % Uncomment if testing for 7 gestures

37

38 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

39 if reduce == 1

40 % mdlName = 'LSSVM_Mdl_EMG ';

41 mdlName = 'LSSVM_Mdl_EMG_7_gest ';

42 else

43 mdlName = 'LSSVM_Mdl_EMG_NoPCA ';

44 end

45 case 3

46 feature_norm = featureNormalize(imuFeats2_all_Tr (:,1:end -1));

47 feature_norm2 = featureNormalize(imuFeats2_all_Tst (:,1:end -1));

48

49 featMat = [imuFeats2_all_Tr; imuFeats2_all_Tst];

50 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

51 mdlName = 'LSSVM_Mdl_IMU ';

52 end

53 % Data reduction

54 if reduce == 1

55 featPCA2 = projectData(feature_norm3 ,17);

56 else

57 featPCA2 = feature_norm3;

www.manaraa.com

B.5 Classification Codes 157

58 end

59

60 % Separate data

61 if featMatID == 1

62 rng('shuffle ')

63 order = randperm (40);

64 labels = featMat(:,end);

65 reps = cell (1 ,40);

66 idx1 = 1;

67 idx2 = 1;

68 idxTr = [];

69 idxTst = [];

70 % cont = 1; % Change this value to determine the number of reps used

for the training set

71 for ii = 1:10

72 aux1 = zeros (1 ,40);

73 aux2 = ones (1 ,40);

74

75 idxAux= find(labels == ii);

76 temp = floor(length(idxAux)/40);

77 aux2 = aux2*temp;

78 aux1 (1: length(idxAux) -(temp *40)) = 1;

79 aux2 = aux2+aux1;

80

81 sizeReps = cumsum(aux2).';

82 sizeReps2 = sizeReps +1;

83 sizeReps2 = [1; sizeReps2 (1:end -1)];

84

85 idx_temp = [sizeReps2 sizeReps];

86 for kk = 1:40

87 reps{kk} = idxAux(idx_temp(kk ,1):idx_temp(kk ,2));

88 end

89 reps_temp = reps(order);

90 for kk = 1:40

91 if kk <= cont

92 idxTr = [idxTr; reps_temp{kk}];

93 else

94 idxTst = [idxTst; reps_temp{kk}];

95 end

96 end

97 end

www.manaraa.com

B.5 Classification Codes 158

98 end

99

100 % Assign testing and training set

101 featMatTr = featPCA2(idxTr ,:);

102 featMatTst = featPCA2(idxTst ,:);

103 labelsTr = labels(idxTr);

104 labelsTst = labels(idxTst);

105

106 %% Train data using different models

107 k = length(mdlID);

108

109 % Find the best model that fit the training set

110 acc = 0;

111 for ii = 1:k

112 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',mdlID(ii)))

,mdlName);

113 aux = eval(mdlName);

114 [~,pred] = predLSSVM(featMatTr ,'Model',aux);

115 CC = confusionmat(labelsTr ,pred);

116 C1 = CC.*eye(length(CC));

117 C2 = sum(CC ,2);

118 a = (sum(sum(C1 ,2)./C2)/(length(unique(labelsTr))))*100;

119 if a > acc

120 acc = a;

121 bestS = mdlID(ii);

122 datTr = aux.datTr;

123 % Change SVM variables

124 gamma = aux.gamma;

125 C = aux.C;

126 bestMdl = aux;

127 bestPred = pred;

128 end

129 end

130

131 switch featMatID

132 case 1

133 aux = load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',

bestS)),'fusedFeats_all_Tr ', 'fusedFeats_all_Tst ');

134 labTr = [aux.fusedFeats_all_Tr; aux.fusedFeats_all_Tst];

135 labTr = reduce_data(labTr); % Uncomment if testing for 7 gestures

136 case 2

www.manaraa.com

B.5 Classification Codes 159

137 aux = load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',

bestS)),'emgFeats_all_Tr ', 'emgFeats_all_Tst ');

138 labTr = [aux.emgFeats_all_Tr; aux.emgFeats_all_Tst];

139 labTr = reduce_data(labTr); % Uncomment if testing for 7 gestures

140 end

141

142 labTr = labTr(:,end);

143

144 %% PAC algorithm

145 % Vectorized RBF Kernel

146 % This is equivalent to computing the kernel on every pair of examples

147 K = rbfKernel(datTr ,datTr ,gamma); % All training data kernel

148 H = K; H(1: size(K,1) +1:end) = H(1: size(K,1)+1:end)+(1/C);

149

150 % ==

151 % GPU stuff

152 reqMemory = numel(K)*8;

153

154 % Reset GPU Memory

155 gpuDev = gpuDevice (1);

156 if gpuDev.AvailableMemory > reqMemory

157 kD = gpuArray(abs ((2 -(2*K)).^(1/2)));

158 kernelDist = gather(kD);

159

160 % Reset GPU Memory

161 gpuDev = gpuDevice (1);

162 else

163 % Compute kernel distance matrix

164 kernelDist = abs ((2 -(2*K)).^(1/2));

165 end

166

167 % ==

168

169 % Split training samples within each class into 'm' clusters and extract

170 % representative particles with percentage 'p' into dataset RSS

171 m = 10; % Recomended value between 9 and 28

172 p = 0.23; % Recomended value between 10% and 20%

173 labs = unique(labTr);

174 rpMat = zeros(size(labTr));

175 idx_rpMat = 1;

176

www.manaraa.com

B.5 Classification Codes 160

177 % For each class

178 for ii = 1: length(labs)

179 idx = find(labTr==labs(ii));

180 dist_Class = kernelDist(idx ,idx);

181 aux = kmedoids1(m,dist_Class);

182

183 % Preallocate Memory and initialize index variable

184 repPart = ceil(histcounts(aux).*p);

185 idxMat = zeros(sum(repPart) ,1);

186 idxAux = 1;

187

188 % Randomly select samples from each cluster

189 for kk = 1: length(repPart)

190 aux_idx = find(aux == kk);

191 aux_idx = aux_idx(randperm(numel(aux_idx)));

192 idxMat(idxAux :(idxAux+repPart(kk) -1)) = idx(aux_idx (1: repPart(kk)));

193 idxAux = idxAux+repPart(kk);

194 end

195

196 % Save selected samples in rpMat and move its index value to the next

197 % available space

198 rpMat(idx_rpMat:idx_rpMat+sum(repPart) -1) = idxMat;

199 idx_rpMat = idx_rpMat+sum(repPart);

200 end

201

202 % Remove zero values from rpMat

203 rpMat = sort(rpMat(rpMat ~=0));

204

205 % Create new training dataset RSS

206 RSS = datTr(rpMat ,:);

207 RSS_H = H(rpMat ,rpMat);

208

209 % Obtain labels of RSS

210 labelsTrRSS = labTr(rpMat);

211

212 [R,alphas ,betas] = findSVMParam(RSS_H ,labelsTrRSS);

213

214 lambda = 10e5;

215 dTh = 0.99;

216 ti = zeros(1,size(RSS ,1));

217

www.manaraa.com

B.5 Classification Codes 161

218 for ii = 1:size(featMatTr ,1)

219 % Predict new sample

220 [~,Yn,KK] = predLSSVM(featMatTr(ii ,:),RSS ,alphas ,betas ,gamma);

221 kDist = abs ((2 -(2*KK)).^(1/2));

222 ti = ti+1; % update unchanging time

223

224 [RP ,I] = min (((exp(ti/lambda)).* kDist));

225

226 D = dTh - RP;

227 if(Yn == labelsTr(ii))

228 if (D > 0) && (Yn == labTr(I))

229 ti(I) = 0;

230 RSS(I,:) = featMatTr(ii ,:);

231 [R,alphas ,betas] = unincLSSVM_test(KK ,labelsTrRSS ,featMatTr(ii ,:),R,I,C

,gamma); % Require upper Cholesky Factor

232 end

233 end

234 end

235 [~,prd] = predLSSVM(featMatTst ,RSS ,alphas ,betas ,gamma);

236 CC_mdl = confusionmat(labelsTst ,prd);

237

238 C1 = CC_mdl .*eye(length(CC_mdl));

239 C2 = sum(CC_mdl ,2);

240 acc3 = (sum(sum(C1 ,2)./C2)/(length(unique(labelsTr))))*100;

241 if featMatID == 1

242 accEMGIMU(jj) = acc3; %Fused feats

243 preds{2,jj} = [labelsTst ,prd];

244 else

245 accEMG(jj) = acc3; %EMG only feats

246 preds{1,jj} = [labelsTst ,prd];

247 end

248 end

249 end

250 end

B.5.2.1 K Medoids Code

1 function [idx] = kmedoids1(m,distMatrix)

2 % Code adapted from:

3 % H.-S. Park and C.-H. Jun , A simple and fast algorithm for k-medoids

4 % clustering ," Expert Systems With Applications , vol. 36, no. 2,

5 % pp. 3336{3341 , 2009.

www.manaraa.com

B.5 Classification Codes 162

6

7 % m = 4;

8 max_it = 10000;

9 didx = 1:size(distMatrix ,1);

10

11 den = sum(distMatrix ,2);

12 den = repmat(den ,[1,size(distMatrix ,2)]);

13 v = sum(distMatrix ./den);

14

15 % Sort v in ascending order

16 [~, idx_medoid] = sort(v);

17

18 idx_medoid = sort(idx_medoid (1:m));

19 idx_medoid = idx_medoid (1:m);

20

21 d_medoid = distMatrix (:, idx_medoid);

22 [dist ,idx] = min(d_medoid ,[],2);

23

24 sum_dist = zeros(1,m);

25 for ii = 1:m

26 sum_dist(:,ii) = sum(dist(idx==ii));

27 end

28

29 prev_sum_dist = sum_dist;

30

31 cont = 1;

32

33 % Step2

34 for jj = 1: max_it

35 for ii = 1:m

36 idx_aux = idx==ii;

37 aux_mat = distMatrix(idx_aux ,idx_aux);

38 aux_didx = didx(:,idx_aux);

39 [~,aux2] = min(sum(aux_mat));

40 idx_medoid(ii) = aux_didx(aux2);

41 end

42

43 idx_medoid = sort(idx_medoid);

44 d_medoid = distMatrix (:, idx_medoid);

45 [dist ,idx] = min(d_medoid ,[],2);

46

www.manaraa.com

B.5 Classification Codes 163

47 for ii = 1:m

48 sum_dist(:,ii) = sum(dist(idx==ii));

49 end

50

51 if prev_sum_dist == sum_dist

52 break;

53 end

54

55 cont = cont + 1;

56 prev_sum_dist = sum_dist;

57

58 end

59

60 end

B.5.2.2 Universal Incremental Learning Code

1 function [U,alphas ,betas] = unincLSSVM_test(K2,S_labels ,newDat ,R,p,C,gamma)

2

3 % Code adapted from:

4 % Q. Huang , D. Yang , L. Jiang , H. Zhang , H. Liu , and K. Kotani ,

5 % "A novel unsupervised adaptive learning method for long -term

6 % electromyography (EMG) pattern recognition", Sensors (Switzerland),

7 % vol. 17, no. 6, 2017.

8

9 %This function assumes we are using a RBF Kernel , code can be

10 %easily modified to use any type of kernel

11 % S_labels = Representative sample set S labels.

12 % K2 = Kernel Matrix of new testing sample newDat against representative

13 % sample set S -> kernelFunction(newDat ,S)

14 % H = LS_SVM Kernel Matrix of RS (This kernel matrix already has the

15 % regularization parameter C)

16 % C = SVM regularization term (the same used for S)

17 % p = index of particle in S to be replaced

18 % newDat = Sample to replace the pth sample in S

19

20 l = size(S_labels ,1);

21 W = zeros(l-1,l-1);

22 U = zeros(l,l);

23

24 h1 = (K2(1:p-1)).';

25 h2 = (K2(p+1:end)).';

www.manaraa.com

B.5 Classification Codes 164

26 hpp = (rbfKernel(newDat ,newDat ,gamma))+(1/C);

27

28 if p ~= 1

29 W1 = R(1:p-1,1:p-1);

30 W(1: size(W1 ,1) ,1:size(W1 ,2)) = W1;

31 U(1:p-1,1:p-1) = W1;

32

33 W2 = R(1:p-1,p+1:l);

34 W(1: size(W2 ,1),size(W,2)-size(W2 ,2)+1: end) = W2;

35

36 u1 = (W1.')\h1;

37 upp = sqrt(hpp -((u1.')*u1));

38

39 U(1:p-1,p) = u1;

40

41 if ~isempty(W2)

42 u2 = (h2 - (W2.')*u1)/upp;

43 U(1: size(W2 ,1),size(U,2)-size(W2 ,2)+1: end) = W2;

44 end

45 else

46 upp = sqrt(hpp);

47 u2 = h2/upp;

48 end

49

50

51 if p ~= l

52

53 U(p,p+1:l) = u2.';

54

55 W3 = R(p+1:l,p+1:l);

56 r2 = (R(p,p+1:l)).';

57 W3 = cholupdate(W3 ,r2);

58 W(size(W,1)-size(W3 ,1)+1:end ,size(W,2)-size(W3 ,2)+1: end) = W3;

59

60 U3 = cholupdate(W3 ,u2,'-');

61

62 U(size(U,1)-size(W3 ,1)+1:end ,size(U,2)-size(W3 ,2)+1: end) = U3;

63

64 end

65 U(p,p) = upp;

66

www.manaraa.com

B.5 Classification Codes 165

67 % FIND ALPHAS AND BETAS USING MULTICLASS CLASSIFICATION

68 nLab = numel(unique(S_labels));

69 Yi = S_labels;

70 alphas = zeros(size(U,1),nLab);

71 betas = zeros(nLab ,1);

72

73 Ev = ones(size(U,1) ,1);

74

75

76 for ii = 1:nLab

77 Yi(S_labels ==ii) = 1;

78 Yi(S_labels ~=ii) = -1;

79

80 % Solve for eta (n) in H*eta = 1. Use the Cholesky factor of H

81 eta = U\(U.'\Ev);

82

83 % Solve for nu (v) in H*nu = y. Use the Cholesky factor of H

84 nu = U\(U.'\Yi);

85

86 betas(ii) = (Ev.'*nu)/(Ev.'*eta);

87 alphas(:,ii) = nu - (eta*betas(ii));

88 end

89

90 end

B.5.3 Adaptive LS-SVM Code

1 function [accEMG ,accEMGIMU ,preds] = lssvmAdapt(subjects ,mdlID ,cont ,reduce)

2 %UNTITLED2 Summary of this function goes here

3 % Detailed explanation goes here

4

5 %%

6 accEMGIMU = zeros(size(subjects));

7 accEMG = zeros(size(subjects));

8 preds = cell(2,numel(subjects));

9

10

11 for jj = 1: length(subjects)

12 subID = subjects(jj);

13 for featMatID = 1:2

14 switch featMatID

15 case 1

www.manaraa.com

B.5 Classification Codes 166

16 % load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID

)) ,...

17 % 'fusedFeats_all_Tr ','fusedFeats_all_Tst ','LSSVM_Mdl_EMGIMU_7_gest ','

LSSVM_Mdl_EMGIMU_NoPCA ');

18 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID))

,...

19 'fusedFeats_all_Tr ','fusedFeats_all_Tst ','LSSVM_Mdl_EMGIMU ','

LSSVM_Mdl_EMGIMU_NoPCA ');

20

21 featMat = [fusedFeats_all_Tr; fusedFeats_all_Tst];

22

23 % featMat = reduce_data(featMat);

24

25 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

26 % [feature_norm3 ,~] = featureNormalize(featMat (:,1:end -1));

27 if reduce == 1

28 % mdlName = 'LSSVM_Mdl_EMGIMU_7_gest ';

29 mdlName = 'LSSVM_Mdl_EMGIMU ';

30 else

31 mdlName = 'LSSVM_Mdl_EMGIMU_NoPCA ';

32 end

33 case 2

34 % load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID

)) ,...

35 % 'emgFeats_all_Tr ','emgFeats_all_Tst ','LSSVM_Mdl_EMG_7_gest ','

LSSVM_Mdl_EMG_NoPCA ');

36

37 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',subID))

,...

38 'emgFeats_all_Tr ','emgFeats_all_Tst ','LSSVM_Mdl_EMG ','

LSSVM_Mdl_EMG_NoPCA ');

39

40 featMat = [emgFeats_all_Tr; emgFeats_all_Tst];

41 % featMat = reduce_data(featMat);

42

43 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

44 % [feature_norm3 ,~] = featureNormalize(featMat (:,1:end -1));

45 if reduce == 1

46 % mdlName = 'LSSVM_Mdl_EMG_7_gest ';

47 mdlName = 'LSSVM_Mdl_EMG ';

48 else

www.manaraa.com

B.5 Classification Codes 167

49 mdlName = 'LSSVM_Mdl_EMG_NoPCA ';

50 end

51 case 3

52 feature_norm = featureNormalize(imuFeats2_all_Tr (:,1:end -1));

53 feature_norm2 = featureNormalize(imuFeats2_all_Tst (:,1:end -1));

54

55 featMat = [imuFeats2_all_Tr; imuFeats2_all_Tst];

56 [~, feature_norm3] = featureNormalize(featMat (:,1:end -1));

57 mdlName = 'LSSVM_Mdl_IMU ';

58 end

59

60 % Data reduction

61 if reduce == 1

62 featPCA2 = projectData(feature_norm3 ,17);

63 else

64 featPCA2 = feature_norm3;

65 end

66

67

68 %--------------------------

69 %test 3

70 if featMatID == 1

71 rng('shuffle ')

72 order = randperm (40);

73 labels = featMat(:,end);

74 reps = cell (1 ,40);

75

76 idx1 = 1;

77 idx2 = 1;

78 idxTr = [];

79 idxTst = [];

80

81 for ii = 1:10

82 aux1 = zeros (1 ,40);

83 aux2 = ones (1 ,40);

84

85 idxAux= find(labels == ii);

86 temp = floor(length(idxAux)/40);

87 aux2 = aux2*temp;

88 aux1 (1: length(idxAux) -(temp *40)) = 1;

89 aux2 = aux2+aux1;

www.manaraa.com

B.5 Classification Codes 168

90

91 sizeReps = cumsum(aux2).';

92 sizeReps2 = sizeReps +1;

93 sizeReps2 = [1; sizeReps2 (1:end -1)];

94

95 idx_temp = [sizeReps2 sizeReps];

96

97 for kk = 1:40

98 reps{kk} = idxAux(idx_temp(kk ,1):idx_temp(kk ,2));

99 end

100

101 reps_temp = reps(order);

102 for kk = 1:40

103 if kk <= cont % cont controls the number of repetitions from each

gesture extracted for training

104 idxTr = [idxTr; reps_temp{kk}];

105 else

106 idxTst = [idxTst; reps_temp{kk}];

107 end

108 end

109 end

110 end

111

112 % Separate data

113 featMatTr = featPCA2(idxTr ,:);

114 featMatTst = featPCA2(idxTst ,:);

115 labelsTr = labels(idxTr);

116 labelsTst = labels(idxTst);

117 %--------------------------

118

119 gamma = 0.5;

120 C = 2;

121

122 %% Train data using different models

123 k = length(mdlID);

124 yHatCell = cell(k,2);

125

126 % Kernel Matrix

127 K = rbfKernel(featMatTr ,featMatTr ,gamma);

128 H = K; H(1: size(K,1) +1:end) = H(1: size(K,1)+1:end)+(1/C);

129

www.manaraa.com

B.5 Classification Codes 169

130 % Create vector of ones

131 Ev = ones(size(H,1) ,1);

132

133 % Compute M matrix

134 M = [H, Ev;Ev.' 0];

135 P = invBlockMat(M);

136

137 % Compute Yhat vector for each model

138 for ii = 1:k

139 load(fullfile('Z:\Memo\Feature Matrices ',sprintf('gestFeatures_S%d',mdlID(ii)))

,mdlName);

140 [yHatCell{ii ,1}, yHatCell{ii ,2}] = predLSSVM(featMatTr ,'Model ',eval(mdlName));

141 end

142

143 [~, ~, alphas , bs] = pSubGradDes(labelsTr ,yHatCell ,P,k);

144

145 KK = rbfKernel(featMatTst ,featMatTr ,0.5);

146

147 w = (alphas)*KK.';

148 YY = w+bs;

149 [~,p3]=max(YY);

150 pred = p3.';

151 CC_mdl = confusionmat(labelsTst ,pred);

152 C1 = CC_mdl .*eye(length(CC_mdl));

153 C2 = sum(CC_mdl ,2);

154 acc3 = (sum(sum(C1 ,2)./C2)/(length(unique(labelsTr))))*100;

155

156 if featMatID == 1

157 accEMGIMU(jj) = acc3; %Fused feats

158 preds{2,jj} = [labelsTst ,pred];

159 else

160 accEMG(jj) = acc3; %EMG only feats

161 preds{1,jj} = [labelsTst ,pred];

162 end

163 end

164 end

165 end

B.5.3.1 Inverse Block Matrix Code

1 function [P,R,S] = invBlockMat(M,varargin)

2 defaultDiagValue = 'False ';

www.manaraa.com

B.5 Classification Codes 170

3 p = inputParser;

4 addRequired(p,'M');

5 addParameter(p,'Diagonal ',defaultDiagValue);

6

7 %% DO NOT MODIFY

8 % parse(p,data ,win_size ,win_inc ,varargin {:});

9 parse(p,M,varargin {:});

10

11 %% Assign parameters to variables here:

12 % var_name = p.Results.Parameter_Name

13 compDiagonal = p.Results.Diagonal;

14

15 %% Operations

16 A = M(1:end -1,1:end -1);

17 B = M(1:end -1,end);

18 C = M(end ,1:end -1);

19 D = M(end ,end);

20

21 % Cholesky factorization

22 R = chol(A,'lower ');

23 S = inv(R);

24

25 Ap = S.'*S;

26 eta = R.'\(R\B);

27 SM = (-B).'*eta;

28

29 if (compDiagonal == "True")

30 Sdiag = sum(S.^2);

31 P = Sdiag .'+((eta .^2)./SM);

32 else

33 Ainv = Ap+Ap*B/SM*C*Ap;

34 Binv = -Ap*B/SM;

35 Cinv = -SM\C*Ap;

36 Dinv = inv(SM);

37 P = [Ainv ,Binv;Cinv ,Dinv];

38 end

39

40 end

B.5.3.2 Projected Sub-Gradient Descent Code

1 function [bestb ,Ytilde ,alphas2 ,b] = pSubGradDes(y,Yhat ,P,k)

www.manaraa.com

B.5 Classification Codes 171

2 %Projected Sub -gradient Descent Algorithm

3 % Adapted from:

4 % T. Tommasi , F. Orabona , C. Castellini , and B. Caputo , "Improving

5 % control of dexterous hand prostheses using adaptive learning ,"

6 % IEEE Trans. Robot., vol. 29, no. 1, pp. 207-219, 2013.

7

8 % M is given by [H, Ev;Ev.' 0];

9

10 Pdiag = diag(P);

11

12 Adp = cell(k,1);

13 Adpcross = Adp;

14

15 betas = zeros(1,k);

16 prevBetas = betas;

17 t = 1;

18

19 y = y(:);

20 lab = unique(y);

21 G = length(lab);

22 N = length(y);

23

24 % Ensure Y is a [G, N] matrix , where G is the number of classes and N is

25 % the number of samples

26 Y = repmat(lab , [1 N]);

27 Y = Y== repmat(y.',[G 1]);

28 Y = double(Y);

29 Y(Y==0) = -1;

30

31 Zv = zeros(G,1);

32

33

34 Ap = ([Y, Zv])*(P.');

35 b = Ap(:,end);

36

37 % cellfun by itself uses a for loop to apply a function to each cell of the

38 % cell array

39 yHat = cellfun (@horzcat ,Yhat (:,1),repmat(mat2cell(Zv ,[length(Zv)],[1]) ,[size(Yhat ,1) ,1]),'

UniformOutput ',false);

40

41 for ii = 1:k

www.manaraa.com

B.5 Classification Codes 172

42 Adp{ii} = yHat{ii}*(P.');

43 Adpcross{ii} = Adp{ii}./(Pdiag.');

44 Adpcross{ii} = Adpcross{ii}(:,1:end -1); %remove bias term

45 end

46

47 Apcross = Ap(:,1:end -1)./(Pdiag (1:end -1).');

48

49 % ==

50 % Repeat until convergence

51 % ==

52 cont = 0;

53 bestd = realmax;

54 for jj = 1:10000

55 Adpaux = zeros(size(Y));

56 for ii = 1:k

57 Adpaux = Adpaux + Adpcross{ii}.* betas(ii);

58 end

59

60 Ytilde = Y - Apcross + Adpaux;

61

62 idxMat = 1:numel(Ytilde);

63 idxMat = reshape(idxMat ,size(Ytilde));

64 idxMat2 = reshape(idxMat(Y~=1),G-1,N);

65

66 % Compute gStar

67 Ytildeaux = Ytilde(idxMat2);

68 [~,argmax] = max(Ytildeaux);

69 argmax2 = (0: size(Ytildeaux ,1):numel(idxMat2));

70 argmax2 = argmax+argmax2 (1:end -1);

71 gStar = idxMat2(argmax2);

72

73 % Compute yi

74 yi = idxMat(y. '+(0: size(Ytilde ,1):numel(idxMat)-G));

75

76 % Compute d

77 d = sign(1-Ytilde(yi)+Ytilde(gStar)); %

78 d(d<=0) = 0;

79 normd = norm(d); % test

80

81 if normd < bestd

82 bestb=betas;

www.manaraa.com

B.5 Classification Codes 173

83 if (bestd - normd) <= 0.05

84 break

85 end

86 bestd = normd;

87 % bestb = betas;

88 end

89

90 % obtain betas vector

91

92 for ii = 1:k

93 betas(ii) = betas(ii) - (1/ sqrt(t))*sum(d.*(Adpcross{ii}(gStar)-Adpcross{ii}(yi)));

94 end

95

96 if norm(betas) >1

97 betas = betas/norm(betas);

98 end

99

100 betas = max(betas ,0);

101

102

103

104 prevBetas = betas;

105 t = t+1;

106 cont = cont +1;

107 end

108

109 al = zeros(size(Ap ,1),size(Ap ,2) -1);

110

111 for ii = 1:k

112 al = al+(bestb(ii).*Adp{ii}(: ,1:end -1));

113 end

114

115 alphas2 = Ap(:,1:end -1) - al;

116 end

B.5.4 Bilinear Model Codes

1 %% Setup

2 clc; clear ; close all;

3

4 winSize = .250; %segment 's windows size in s

5 winOverlap = .125; %window overlap (about 50% of windows size) in s

www.manaraa.com

B.5 Classification Codes 174

6 deadzone = 0.02;

7

8 %% Read Data

9

10 subjectID = [2:7 9:20 22:25];

11

12 for gg = subjectID

13 dataFile = fullfile('Z:\Memo\Data\',sprintf('S_%d',gg),sprintf('expData_S%d.mat',gg));

14

15 workspaceVariable = sprintf('gestFeatures_S%d_bm',gg);

16 dataFullFileName = fullfile('Z:\Memo\Feature Matrices\Bilinear Models Features2 ',

workspaceVariable);

17

18 % CLEAR VALUES HERE

19 featsEMG = [];

20 featsIMU = [];

21 gest_labels = [];

22

23 load(dataFile);

24 for gestName = ["Wrist Flexion","Wrist Extension ","Wrist Pronation","Wrist Supination

","Wrist Aduction","Wrist Abduction","Hand Fist","Hand Open","Precision Pinch","Key

Pinch"]

25

26 switch gestName

27 case "Wrist Flexion"

28 gesture = 1;

29 case "Wrist Extension"

30 gesture = 2;

31 case "Wrist Pronation"

32 gesture = 3;

33 case "Wrist Supination"

34 gesture = 4;

35 case "Wrist Aduction"

36 gesture = 5; % Radial Deviation

37 case "Wrist Abduction"

38 gesture = 6; % Ulnar Deviation

39 case "Hand Fist"

40 gesture = 7;

41 case "Hand Open"

42 gesture = 8;

43 case "Precision Pinch"

www.manaraa.com

B.5 Classification Codes 175

44 gesture = 9;

45 case "Key Pinch"

46 gesture = 10;

47 end

48

49 for kk = 1:4 % Arm Position

50 order1 = randperm (10); % Randomize order of repetitions

51

52 for ii = order1 % Repetition

53 if ~isempty(dataExp{ii,gesture ,kk}) %gesture

54 timeEMG_log = dataExp{ii,gesture ,kk}{1 ,1};

55 emg_log = dataExp{ii,gesture ,kk}{1 ,2};

56 timeIMU_log = dataExp{ii,gesture ,kk}{1 ,3};

57 imu_log = dataExp{ii,gesture ,kk}{1 ,4};

58 end

59 [feats ,~,~,feats_imu2 ,labels ,actarea ,actareaimu] = main_loop_bm(gesture ,

timeEMG_log ,emg_log ,timeIMU_log ,imu_log ,winSize ,winOverlap ,deadzone);

60

61 featsEMG = [featsEMG;feats];

62 featsIMU = [featsIMU;feats_imu2];

63 gest_labels = [gest_labels;labels];

64 end

65 end

66 end

67

68 emgFeats = [featsEMG ,gest_labels];

69 imuFeats = [featsIMU ,gest_labels];

70 fusedFeats = [featsEMG ,featsIMU ,gest_labels];

71

72 size(emgFeats)

73

74 bm_Mdl.emgFeats = emgFeats;

75 bm_Mdl.imuFeats = imuFeats;

76 bm_Mdl.fusedFeats = fusedFeats;

77

78 save([dataFullFileName '.mat'],'bm_Mdl ');

79 end

1 function [features , featuresIMU , featuresIMU1 , featuresIMU2 , labels , active_area ,

active_areaIMU] = main_loop_bm(gesture ,timeEMG ,channels ,timeIMU ,imu_log ,winSize ,

winOverlap ,deadzone)

www.manaraa.com

B.5 Classification Codes 176

2 %UNTITLED4 Summary of this function goes here

3 % Detailed explanation goes here

4

5 noSegmentation = 0;

6

7 if(nargin < 8)

8 deadzone = 0.02;

9 if (nargin < 7)

10 winOverlap = .125;

11 if (nargin < 6)

12 noSegmentation = 1;

13 end

14 end

15 end

16

17

18 test_time = ceil(length(timeEMG)/200); %time duration of data acquisition in seconds

19 fs = length(timeEMG)/test_time; %real sampling frequency UNCOMMENT LINE

20

21 test_time_IMU = ceil(length(timeIMU)/50); %time duration of data acquisition in seconds

22 fs_IMU = length(timeIMU)/test_time_IMU; %real sampling frequency UNCOMMENT LINE

23

24 %% Conditioning

25

26 gyro = imu_log (: ,5:7);

27 acc = imu_log (: ,8:10);

28

29 signal = [gyro ,acc];

30

31 % Because the timestamp on both timeEMG and timeIMU are different , we have

32 % to make them similar by substracting the first value from timeEMG and

33 % timeIMU from their respective vectors

34 timeEMG = timeEMG - timeEMG (1);

35 timeIMU = timeIMU - timeIMU (1);

36

37

38 %% Preprocessing

39 emgsignal = emgFilter(channels , fs); % EMG filter

40 IMU_signal_filt = imuFilter(signal ,fs_IMU); % IMU filter (Remove 'gravity ' (DC component)

from the acceleration data)

41

www.manaraa.com

B.5 Classification Codes 177

42 % ==

43 % We will have to upsample the IMU signal so we can later fuse the

44 % feature vectors

45

46 % Upsample method one: repeat sample values

47 imuUp1 = (IMU_signal_filt (:)).';

48 imuUp1 = reshape(repmat(imuUp1 ,[4 1]),size(IMU_signal_filt ,1)*4,size(IMU_signal_filt ,2));

49

50 % Upsample method two: interpolate using a cubic spline

51 imuUp2 = interp1(timeIMU ,IMU_signal_filt ,timeEMG ,'spline ');

52

53

54 onEMG = 800:1650;

55 active_area = [onEMG (1);onEMG(end)];

56

57

58 emgsignal_active = emgsignal(onEMG ,:);

59

60 idx = timeEMG(active_area);

61 active_areaIMU = zeros(size(active_area));

62

63 for ii = 1: length(idx)

64 temp = find(timeIMU >= idx(ii));

65 active_areaIMU(ii) = temp (1);

66 end

67

68

69 cont = (active_areaIMU (2:2: end)-active_areaIMU (1:2:end -1))+1;

70 check1 = reshape(active_areaIMU ,2,[]);

71

72 rows_size = sum(cont);

73 idx1 = cumsum(cont);

74

75 onIMU = zeros(rows_size ,1);

76

77 temp1 = 1;

78

79 for ii = 1:size(check1 ,2)

80 onIMU(temp1:idx1(ii)) = check1(1,ii):check1(2,ii);

81 temp1 = idx1(ii)+1;

82 end

www.manaraa.com

B.5 Classification Codes 178

83

84 IMU_active = IMU_signal_filt(onIMU ,:); % Non upsampled signal

85 IMU_active1 = imuUp1(onEMG ,:); % Upsampled signal method 1. We use same active

area as EMG b/c both signals have the same sampling rate now

86 IMU_active2 = imuUp2(onEMG ,:); % Upsampled signal method 2. We use same active

area as EMG b/c both signals have the same sampling rate now

87

88

89 %% Feature Extraction

90 if isempty(emgsignal_active)

91 features = [];

92 labels = [];

93 active_area = [0;0];

94 active_areaIMU = [0;0];

95 return

96 end

97 if ~noSegmentation

98 % ==

99 winIncrement = winSize -winOverlap;

100 win_size = ceil(winSize *200); % Myo EMG FS

101 win_inc = ceil(winIncrement *200); % Myo EMG FS

102 win_sizeIMU = ceil(winSize *50); % Myo IMU FS

103 win_incIMU = ceil(winIncrement *50); % Myo IMU FS

104

105 features = extract_feature(emgsignal_active ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "MAVS" "WL" "ZC" "AR"]);%["RMS" "AR"]

106 featuresIMU = extract_feature(IMU_active ,'winSize ',win_sizeIMU ,'winInc ',win_incIMU ,'

Features ' ,["MAV" "WL"]);

107 featuresIMU1 = extract_feature(IMU_active1 ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "WL"]); % We use the same parameters as with the EMG signal b/c

both signals have the same sampling rate now

108 featuresIMU2 = extract_feature(IMU_active2 ,'winSize ',win_size ,'winInc ',win_inc ,'

Features ' ,["MAV" "WL"]); % We use the same parameters as with the EMG signal b/c

both signals have the same sampling rate now

109 else

110 features = extract_feature(emgsignal_active ,'Features ' ,["MAV" "WL" "ZC" "AR"]);

111 featuresIMU = extract_feature(IMU_active ,'Features ' ,["MAV" "WL"]);

112 featuresIMU1 = extract_feature(IMU_active1 ,'Features ' ,["MAV" "WL"]); % We use the same

parameters as with the EMG signal b/c both signals have the same sampling rate now

113 featuresIMU2 = extract_feature(IMU_active2 ,'Features ' ,["MAV" "WL"]); % We use the same

parameters as with the EMG signal b/c both signals have the same sampling rate now

www.manaraa.com

B.5 Classification Codes 179

114 end

115

116 labels = ones(size(features ,1) ,1).* gesture;

117

118 end

B.5.4.1 Learn Bilinear Models Code

1 function [W,WVT ,WVTZ ,X,Z,cont] = bmLearn(Y,U,K,M,N,I,J)

2 %Bilinear Models Function

3 % Y = Stacked matrix of Feature Matrices

4 % U = Number of users

5 % K = Number of features

6 % M = Number of motions/gestures

7 % N = Number of samples per gesture

8 % I = Desired first dimension of style and content variables

9 % J = Desired second dimension of style and content variables

10

11 % % U = 6; % Number of users in our training data (we know this value); 10

12 % K = size(Y,1)/U; % Number of channels being used

13 % M = 10; % Number of motions (we know this value)

14 % N = size(Y,2)/M; % Number of samples of each motion

15

16 YVT = vectTrans2(Y,K);

17

18 MN = size(YVT ,1)/K;

19

20 [~,~,V] = svd(Y);

21 vt = V.';

22 X = vt(1:J,:);

23 Xb = X;

24 Zb = zeros(I,U);

25

26 cont = 0;

27 for ii = 1:100000000

28

29 %----------------------

30 % Find Z

31 mat1 = Y*X.';

32 % mat1VT = vectTrans(mat1 ,U,J,K);

33 mat1VT = vectTrans2(mat1 ,K);

34

www.manaraa.com

B.5 Classification Codes 180

35 [~,~,V] = svd(mat1VT);

36 vt = V.';

37 Z = vt(1:I,:);

38 %-----------------------

39 % Find X

40 mat2 = YVT*Z.';

41

42

43 %===================== GPU code =====================

44 existGPU = gpuDeviceCount;

45 if existGPU > 0

46 dev = gpuDevice (1);

47 if dev.AvailableMemory > (numel(mat2)*8)

48 mat2VT = gpuArray(vectTrans2(mat2 ,K));

49 [~,~,vv] = svd(mat2VT);

50 V = gather(vv);

51 dev = gpuDevice (1); % Clear GPU memory

52 else

53 mat2VT = vectTrans2(mat2 ,K);

54 [~,~,V] = svd(mat2VT);

55 end

56 else

57 mat2VT = vectTrans2(mat2 ,K);

58 [~,~,V] = svd(mat2VT);

59 end

60 %=================== end GPU code ===================

61

62 vt = V.';

63 X = vt(1:J,:);

64

65 cont = cont +1;

66

67 if (norm(X,'fro')-norm(Xb,'fro') == 0) && (norm(Z,'fro')-norm(Zb,'fro') == 0)

68 break;

69 end

70

71 Xb = X;

72 Zb = Z;

73 end

74

75 mat1 = Y*X.';

www.manaraa.com

B.5 Classification Codes 181

76 YXtVT = vectTrans2(mat1 ,K);

77

78

79 WVT = (YXtVT*Z.');

80 W = vectTrans2(WVT ,K);

81

82 WVTZ = vectTrans2(WVT*Z,K);

83

84 end

B.5.4.2 Style and Content Separation Code

1 clear ; clc;

2 load('cvAccWithPCA.mat')

3 testDat = cell (5,1);

4 cvModels2 = cvModels;

5 reduce = 1; % 0 or 1

6 tic

7 for gg = 1:5

8 ids = cvModels{gg}{1};

9 stackedY_emg = [];

10 stackedY_imu = [];

11 for subID = ids

12 load(fullfile('Z:\Memo\Feature Matrices\Bilinear Models Features ',sprintf('

gestFeatures_S%d_bm',subID)),'bm_Mdl ');

13

14 featMatEMG = bm_Mdl.emgFeats;

15 featMatIMU = bm_Mdl.imuFeats;

16

17 if reduce

18 featMatEMG = reduce_data(featMatEMG);

19 featMatIMU = reduce_data(featMatIMU);

20 end

21

22 featPCA2 = featMatEMG (:,1:end -1); % TEST LINE

23 featPCA2_imu = featMatIMU (:,1:end -1); % TEST LINE

24

25 % Transpose featPCA2 so that the features are in the rows and the samples are in

the columns

26 stackedY_emg = [stackedY_emg;featPCA2 .'];

27 stackedY_imu = [stackedY_imu;featPCA2_imu .'];

28 end

www.manaraa.com

B.5 Classification Codes 182

29

30 gest = numel(unique(featMatEMG (:,end)));

31 [W,WVT ,WVTZ ,X,Z,cont] = bmLearn(stackedY_emg ,numel(ids),size(featPCA2 ,2),gest ,(size(

featPCA2 ,1)/gest) ,2,3);

32

33 yy = stackedY_imu .';

34 YY = zeros(size(yy ,1) ,12);

35 for ii=1:12

36 YY(:,ii) = mean(yy(:,ii:12:end -(12-ii)) ,2);

37 end

38

39 Mdl_bm.X = X; %featPCA2

40 Mdl_bm.W = W;

41 Mdl_bm.Z = Z;

42 Mdl_bm.IMU = YY;

43 Mdl_bm.Convergence = cont;

44 Mdl_bm.labels = featMatEMG (:,end);

45

46 testDat{gg} = Mdl_bm;

47 end

48 toc

49 fullfile_name = fullfile('Z:\Memo\Feature Matrices\Bilinear Models Features ',sprintf('

bm_Content_Variables_%d_gest.mat',gest));

50 save(fullfile_name ,'testDat ');

B.5.4.3 Vector Transpose Code

1 function [vectdataVT] = vectTrans2(vectdata ,K)

2 %Returns a matrix in the form of: [K*J,I]

3 % I = Desired columns

4 % J = Desired rows

5 % K = Row multiplier

6

7 U = size(vectdata ,1)/K;

8 C = size(vectdata ,2);

9

10 idxvector = 1: numel(vectdata); % Create a vector which values range from 1 to the # of

elements in vectdata

11 idxvector = reshape(idxvector ,size(vectdata)); % Reshape the vector into a matrix of the

same size as vectdata

12

13 auxMat = mat2cell(vectdata ,ones(1,U).*K,ones(1,C));

www.manaraa.com

B.6 General Purpose Codes 183

14 vectdataVT = cell2mat(auxMat ');

15

16 end

B.6 General Purpose Codes

B.6.1 Reduce Number of Gestures Code

1 function newData = reduce_data(data ,varargin)

2 % Remove desired gestures from data. Gesture inputs must be in a string

3 % format and inside a vector. If no gestures are used as an input , the

4 % function will remove the WAD , WAB , and PP gestures

5 % Example:

6 % newData = reduce_data(data ,["WAD","WAB","PP"])

7 %

8 % Valid inputs:

9 % WF Wrist Flexion

10 % WE Wrist Extension

11 % WP Wrist Pronation

12 % WS Wrist Supination

13 % WAD Wrist Aduction (Default gesture to be removed)

14 % WAB Wrist Abduction (Default gesture to be removed)

15 % HF Hand Fist

16 % HO Hand Open

17 % PP Precision Pinch (Default gesture to be removed)

18 % KP Key Pinch

19

20 defaultGestures = ["WAD" "WAB" "PP"];

21

22 p = inputParser;

23 addRequired(p,'data');

24 addParameter(p,'Gestures ',defaultGestures);

25

26 %% DO NOT MODIFY

27 % parse(p,data ,win_size ,win_inc ,varargin {:});

28 parse(p,data ,varargin {:});

29

30 %% Assign parameters to variables here:

31 % var_name = p.Results.Parameter_Name

32 gests_to_remove = p.Results.Gestures;

33

www.manaraa.com

B.6 General Purpose Codes 184

34 %% Main

35

36 % Substitute labels of gestures to be removed with zeros

37 gests = 1:10;

38 labels = data(:,end);

39 for ii = gests_to_remove

40 switch ii

41 case "WF"

42 labels(labels == gests (1)) = 0;

43 case "WE"

44 labels(labels == gests (2)) = 0;

45 case "WP"

46 labels(labels == gests (3)) = 0;

47 case "WS"

48 labels(labels == gests (4)) = 0;

49 case "WAD"

50 labels(labels == gests (5)) = 0;

51 case "WAB"

52 labels(labels == gests (6)) = 0;

53 case "HF"

54 labels(labels == gests (7)) = 0;

55 case "HO"

56 labels(labels == gests (8)) = 0;

57 case "PP"

58 labels(labels == gests (9)) = 0;

59 case "KP"

60 labels(labels == gests (10)) = 0;

61 end

62 end

63

64 % Remove data whose label is zero from the dataset

65 datEMGIMU_17 = data(labels ~=0,:);

66

67 % Make the labels of the dataset sequential

68 aux1 = datEMGIMU_17 (:,end);

69 gestures = unique(aux1);

70 temp = diff(gestures);

71 aux = find(temp >1) +1;

72

73 for ii = aux (1):length(gestures)

74 aux1(aux1== gestures(ii))=ii;

www.manaraa.com

B.6 General Purpose Codes 185

75 end

76

77 datEMGIMU_17 (:,end) = aux1;

78 newData = datEMGIMU_17;

79

80 end

www.manaraa.com

Appendix C

Mathematical Formulations

C.1 Least Squares Support Vector Machines

The optimization problem of the LS-SVM is given by the following equation:

min
w,b

1

2
‖w‖2 +

C
2

N∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi i = 1, ..., N,

(C.1)

where w is a weight vector, xi is the feature vector of the ith training sample, φ(·) is the non-linear

function that maps the samples of xi to a high dimensional space, b is the bias term, ξ is the

LS-SVM slack variable that relaxes the optimization constraints, and yi is the ith training sample

label. After solving the Lagrangian for Equation (C.1), the following LS-SVM optimal conditions

are obtained:

∂

∂w
L(w, b, ξ) = 0 ⇒ w =

N∑
i=1

αi · φ(xi) (C.2)

∂

∂b
L(w, b, ξ) = 0 ⇒

N∑
i=1

αi = 0 (C.3)

∂

∂ξi
L(w, b, ξ) = 0 ⇒ Cξi = αi (C.4)

186

www.manaraa.com

C.2 Adaptive LS-SVM 187

∂

∂αi
L(w, b, ξ) = 0 ⇒

N∑
i=1

w · φ(xi) + b+ ξi − yi = 0. (C.5)

Substituting Equations (C.2) to (C.4) into Equation (C.5) to eliminate w and ξ, the following

equation is found:

N∑
i,j=1

αj〈φ(xi), φ(xj)〉+
αi

C
+ b− yi = 0, (C.6)

where 〈·〉 represent the dot product between φ(xi) and φ(xj). Equation (C.6) can then be repre-

sented in the form of linear equations, as follows:

K + I
C

~1

~1 T 0

 ·
α
b

 =

y
0

 , (C.7)

where ~1 represents a vector of 1’s, I is the identity matrix, α, b and C are the LS-SVM parameters,

and K is the kernel matrix with entries Ki,j = K(xi, xj) = 〈φ(xi), φ(xj)〉, being K(xi, xj) the kernel

function.

C.2 Adaptive LS-SVM

This section describes the mathematical formulations and derivations of the Adaptive LS-SVM

classification method proposed by Tommasi et al. [81]. This classification method aims to solve

the following optimization problem:

min
w,b

1

2
‖w − βŵ‖2 +

C
2

N∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi i = 1, ..., N,

(C.8)

where β is a scaling factor that weighs a pretrained model ŵ. Solving the Lagrangian for Equa-

tion (C.8) yields:

www.manaraa.com

C.2 Adaptive LS-SVM 188

N∑
i,j=1

αj〈φ(xi), φ(xj)〉+
αi

C
+ b = yi − βŵ · φ(xi). (C.9)

From Equation (C.2), the dot product [ŵ ·φ(xi)] in Equation (C.9) can be rewritten as ŷ, which

is the prediction on a new sample using a previous trained LS-SVM model. Thus, the system of

linear equations in Equation (C.7) changes to:

M ·

α
b

 =

y − βŷ
0

 , (C.10)

where M is the first matrix to the left in Equation (C.7), and y is the vector that contains the

label samples. From Equation (C.10), the parameters α and b are obtained, as follows:

α
b

 = P ·

y − βŷ
0

 , (C.11)

where P = M−1. Finally, following the same procedure in [98], and using Equation (C.11) a closed

form solution for the leave-one-out prediction ỹi on sample i when removed from the training set

is given by:

ỹi = yi −
αi

Pii
. (C.12)

Having α = α′ − βα′′, the leave-one-out prediction is then given by:

ỹi = yi −
α′i
Pii

+ β
α′′i
Pii

, (C.13)

where α′ and α′′ are given by:

[α′
T
, b′]T = P · [yT , 0]T (C.14)

[α′′
T
, b′′]T = P · [ŷT , 0]T . (C.15)

www.manaraa.com

C.2 Adaptive LS-SVM 189

C.2.1 Adaptive LS-SVM From Multiple Subjects

A variation of the Adaptive LS-SVM consists of using more than one parameter from previous

pretrained models to construct a new learning problem. For this case, Equation (C.8) changes so

that the new optimization problem becomes:

min
w,b

1

2

∥∥∥∥∥w −
K∑
k=1

~β(k) ~̂w(k)

∥∥∥∥∥
2

+
C
2

N∑
i=1

ξ2i

subject to yi = w · φ(xi) + b+ ξi i = 1, ..., N.

(C.16)

The main difference between Equation (C.8) and Equation (C.16) is that the coefficient β and

the parameter ŵ in Equation (C.8) are replaced with new vectors ~β, whose number of elements

are equal to K pretrained models, and ~̂w, which is a vector of matrices containing the pretrained

parameters w of previous K models, respectively. The superscript (k) in Equation (C.16) indicates

the kth element of ~β and ~̂w. Furthermore, for a new classification model, the parameter w is given

by the weighted sum of the pretrained parameters ~̂w(k) of previous models scaled by its respective

coefficient ~β(k), plus the new model built on incoming new training data, as follows:

w =

K∑
k=1

~β(k) ~̂w(k) +

N∑
i=1

αiφ(xi). (C.17)

As before, it can be seen that by removing the first summation term in Equation (C.17), i.e., by

making all elements in ~β equal to 0, the original LS-SVM formulation is recovered.

www.manaraa.com

Appendix D

Python Code

D.1 Real-Time EMG Data Streaming

1 # The MIT License (MIT)

2 #

3 # Copyright (c) 2017 Niklas Rosenstein

4 #

5 # Permission is hereby granted , free of charge , to any person obtaining a copy

6 # of this software and associated documentation files (the "Software"), to

7 # deal in the Software without restriction , including without limitation the

8 # rights to use , copy , modify , merge , publish , distribute , sublicense , and/or

9 # sell copies of the Software , and to permit persons to whom the Software is

10 # furnished to do so, subject to the following conditions:

11 #

12 # The above copyright notice and this permission notice shall be included in

13 # all copies or substantial portions of the Software.

14 #

15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR

16 # IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,

17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

18 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER

19 # LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING

20 # FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

21 # IN THE SOFTWARE.

22 #

23 # Author: Jose Guillermo Colli Alfaro

24 # Date: October 2, 2018

190

www.manaraa.com

D.1 Real-Time EMG Data Streaming 191

25 # Version: 1.0

26

27 from matplotlib import pyplot as plt

28 from collections import deque

29 from threading import Lock , Thread

30

31 import myo

32 import numpy as np

33

34

35 class EmgCollector(myo.DeviceListener):

36 """

37 Collects EMG data in a queue with *n* maximum number of elements.

38 """

39

40 def __init__(self, n):

41 self.n = n

42 self.lock = Lock()

43 self.emg_data_queue = deque(maxlen=n)

44

45 def get_emg_data(self):

46 with self.lock:

47 return list(self.emg_data_queue)

48

49 # myo.DeviceListener

50

51 def on_connected(self, event):

52 event.device.stream_emg(True)

53

54 def on_emg(self, event):

55 with self.lock:

56 self.emg_data_queue.append ((event.timestamp , event.emg))

57

58

59 class Plot(object):

60

61 def __init__(self, listener):

62 self.n = listener.n

63 self.listener = listener

64 self.fig = plt.figure ()

65 self.axes = self.fig.add_subplot(’111’)

www.manaraa.com

D.1 Real-Time EMG Data Streaming 192

66 self.axes.set_ylim ([0, 1000])

67 self.graph = self.axes.plot(np.arange(self.n), np.zeros(self.n))[0]

68 #Insert code for transparent background in plot

69 plt.ion()

70

71 def update_plot(self):

72 emg_data = self.listener.get_emg_data ()

73 emg_data = np.array([x[1] for x in emg_data]).T

74 emg_data2 = np.sum(np.abs(emg_data),axis = 0)

75 #for data in emg_data2:

76 #print(len(data))

77

78 #print(emg_data2.size)

79 if emg_data2.size < self.n:

80 # Fill the left side with zeroes.

81 data = np.concatenate ([np.zeros(self.n - emg_data2.size), emg_data2], axis=None)

82 else:

83 data = emg_data2

84 self.graph.set_ydata(data)

85 plt.draw()

86

87 def main(self):

88 while True:

89 self.update_plot ()

90 plt.pause (1.0 / 30)

91

92

93 def main ():

94 myo.init(’C:/ Users/jcollial/Google Drive/UWO/Masters Project/Myo/’

95 ’Real Time Plot/PythonApplication2/myo -sdk -win -0.9.0/ bin/myo32.dll’)

96 hub = myo.Hub()

97 listener = EmgCollector (512)

98 with hub.run_in_background(listener.on_event):

99 Plot(listener).main()

100

101

102 if __name__ == ’__main__ ’:

103 main()

www.manaraa.com

D.2 Classification Using Bilinear EMG Models 193

D.2 Classification Using Bilinear EMG Models

1 import numpy as np

2 from numpy import array

3 import time

4 import pandas as pd # For loading and processing the dataset

5 import tensorflow as tf # Of course , we need TensorFlow.

6 from sklearn.model_selection import train_test_split

7 import os

8

9 from collections import deque

10 import random

11 from tensorflow.keras.models import Sequential

12 from tensorflow.keras.layers import Dense , Dropout , LSTM , CuDNNLSTM , \

13 BatchNormalization , Bidirectional

14 from tensorflow.keras.callbacks import TensorBoard

15 from tensorflow.keras.callbacks import ModelCheckpoint , ModelCheckpoint

16 from sklearn import preprocessing

17 import matplotlib.pyplot as plt

18 from sklearn.preprocessing import MinMaxScaler ,StandardScaler

19 from tensorflow.keras.callbacks import TensorBoard

20 from tensorflow.keras.callbacks import ModelCheckpoint , ModelCheckpoint

21

22

23 # NAME = "Classification -{}". format(int(time.time ()))

24

25 data = pd.read_csv(’Z:/Memo/BM Python Code/Data/CV5/DatEMGIMU5_7_gest.csv’) # Load EMG Data

26

27 x_trainEMG = data.drop([’f4’,’f5’,’f6’,’f7’,’f8’,’f9’,’f10’,’f11’,

28 ’f12’,’f13’,’f14’,’f15’,’label’], axis =1). values

29 x_trainEMGIMU = data.drop(’label ’, axis =1). values

30 y_train = data[’label’]. values

31 y_train = y_train - 1 # Subtract 1 from the labels so that they start at 0

32

33 # Select optimizer

34 opt = tf.keras.optimizers.Adam(lr=0.001 , decay=1e-6)

35

36 # =============================== Custom Activation Functions ===============================

37

38

39 def my_leaky_relu(features):

www.manaraa.com

D.2 Classification Using Bilinear EMG Models 194

40 ’’’This function allows to modify the default alpha value of

41 the tf.nn.leaky_relu activation function ’’’

42 return tf.nn.leaky_relu(features , alpha =0.01)

43

44

45 # == EMG Model ==

46 sc = StandardScaler ()

47 x_trainEMG_scaled=sc.fit_transform(x_trainEMG)

48 modelEMG = Sequential ()

49 modelEMG.add(Dense(50, activation=tf.nn.relu , input_shape =(x_trainEMG_scaled.shape [1:])))

50 modelEMG.add(Dropout (0.2))

51 modelEMG.add(BatchNormalization ())

52

53 # modelEMG = Sequential ()

54 # modelEMG.add(Dense(50, activation=tf.nn.relu , input_shape =(x_trainEMG.shape [1:])))

55 # modelEMG.add(Dropout (0.2))

56 # modelEMG.add(BatchNormalization ())

57

58 modelEMG.add(Dense(20, activation=tf.nn.relu))

59 modelEMG.add(Dropout (0.2))

60

61 modelEMG.add(Dense(7, activation=’softmax ’))

62

63 # Compile EMG model

64 modelEMG.compile(

65 loss=’sparse_categorical_crossentropy ’,

66 optimizer=opt ,

67 metrics =[’accuracy ’]

68)

69

70 # Train EMG model

71 historyEMG = modelEMG.fit(

72 x_trainEMG , y_train ,

73 batch_size =256,

74 epochs =300,

75 # validation_data =(x_test_scaled , y_test),

76 # validation_split = 0.2,

77

78)

79

80 # plt.plot(historyEMG.history[’acc ’])

www.manaraa.com

D.2 Classification Using Bilinear EMG Models 195

81 # plt.title(’model accuracy ’)

82 # plt.ylabel(’accuracy ’)

83 # plt.xlabel(’epoch ’)

84 # plt.legend([’train ’, ’test ’], loc=’upper left ’)

85 # plt.show()

86 # # summarize history for loss

87 # plt.plot(historyEMG.history[’loss ’])

88 # plt.title(’model loss ’)

89 # plt.ylabel(’loss ’)

90 # plt.xlabel(’epoch ’)

91 # plt.legend([’train ’, ’test ’], loc=’upper left ’)

92 # plt.show()

93

94 # ====================================== EMG+IMU Model ======================================

95 sc = StandardScaler ()

96

97 x_trainEMGIMU_scaled=sc.fit_transform(x_trainEMGIMU)

98

99 modelEMGIMU = Sequential ()

100 modelEMGIMU.add(Dense(50, activation= tf.nn.relu ,

101 input_shape =(x_trainEMGIMU_scaled.shape [1:]))) # 50

102 modelEMGIMU.add(Dropout (0.2))

103 modelEMGIMU.add(BatchNormalization ())

104

105 modelEMGIMU.add(Dense(20, activation= tf.nn.relu)) # 20

106 modelEMGIMU.add(Dropout (0.2))

107

108 # modelEMGIMU.add(Dense(15, activation= tf.nn.leaky_relu)) # 20

109 # modelEMGIMU.add(Dropout (0.2))

110

111 modelEMGIMU.add(Dense(7, activation=’softmax ’))

112

113 # Compile EMG+IMU model

114 modelEMGIMU.compile(

115 loss=’sparse_categorical_crossentropy ’,

116 optimizer=opt ,

117 metrics =[’accuracy ’]

118)

119

120 # Train EMG+IMU model

121 historyEMGIMU = modelEMGIMU.fit(

www.manaraa.com

D.2 Classification Using Bilinear EMG Models 196

122 x_trainEMGIMU_scaled , y_train ,

123 batch_size =256,

124 epochs =300,

125 # validation_data =(x_test_scaled , y_test),

126 # validation_split = 0.2,

127

128)

129

130 # plt.plot(historyEMGIMU.history[’acc ’])

131 # plt.title(’model accuracy ’)

132 # plt.ylabel(’accuracy ’)

133 # plt.xlabel(’epoch ’)

134 # plt.legend([’train ’, ’test ’], loc=’upper left ’)

135 # plt.show()

136 # # summarize history for loss

137 # plt.plot(historyEMGIMU.history[’loss ’])

138 # plt.title(’model loss ’)

139 # plt.ylabel(’loss ’)

140 # plt.xlabel(’epoch ’)

141 # plt.legend([’train ’, ’test ’], loc=’upper left ’)

142 # plt.show()

143

144 # ===

145 # == PREDICT ==

146 # ===

147 datasetEMG_test = pd.read_csv(’Z:/Memo/BM Python Code/Data/CV5/’

148 ’CV5_bm_testdataEMG4_7_gests.csv’)

149 datasetEMGIMU_test = pd.read_csv(’Z:/Memo/BM Python Code/Data/CV5/’

150 ’CV5_bm_testdataEMGIMU4_7_gests.csv’)

151

152 x_testEMG = datasetEMG_test.drop(’label’, axis =1). values

153 x_testEMGIMU = datasetEMGIMU_test.drop(’label’, axis =1). values

154

155 y_test = datasetEMG_test[’label’]. values

156 y_test = y_test - 1 # Subtract 1 from the labels so that they start at 0

157

158 # == EMG Model ==

159 sc = StandardScaler ()

160 x_testEMG_scaled=sc.fit_transform(x_testEMG)

161 predictionsEMG = modelEMG.predict ([x_testEMG_scaled])

162

www.manaraa.com

D.2 Classification Using Bilinear EMG Models 197

163 # predictionsEMG = modelEMG.predict ([x_testEMG])

164

165 y_maxPre_EMG= np.argmax(predictionsEMG , axis =1)

166

167

168 from sklearn.metrics import confusion_matrix , recall_score , precision_score , f1_score , \

169 classification_report

170 confusion_matrix(y_test , y_maxPre_EMG)

171 print(classification_report(y_test , y_maxPre_EMG))

172 c_Mat_EMG = confusion_matrix(y_test , y_maxPre_EMG)

173

174 # ====================================== EMG+IMU Model ======================================

175 sc = StandardScaler ()

176

177 x_testEMGIMU_scaled=sc.fit_transform(x_testEMGIMU)

178 # x_testEMGIMU_scaled=sc.transform(x_testEMGIMU)

179

180 predictionsEMGIMU = modelEMGIMU.predict ([x_testEMGIMU_scaled])

181

182 y_maxPre_EMGIMU= np.argmax(predictionsEMGIMU , axis =1)

183

184

185 from sklearn.metrics import confusion_matrix , recall_score , precision_score , f1_score , \

186 classification_report

187 confusion_matrix(y_test , y_maxPre_EMGIMU)

188 print(classification_report(y_test , y_maxPre_EMGIMU))

189 c_Mat_EMGIMU = confusion_matrix(y_test , y_maxPre_EMGIMU)

190

191 # =================================== Save Models Results ===================================

192 df1 = pd.DataFrame(c_Mat_EMG)

193 df2 = pd.DataFrame(c_Mat_EMGIMU)

194

195 writer = pd.ExcelWriter(’Z:/Memo/BM Python Code/Data/CV5/’

196 ’CV5_bm_7_gests_Results_S15.xlsx’, engine = ’xlsxwriter ’)

197

198 df1.to_excel(writer , sheet_name = ’EMG’)

199 df2.to_excel(writer , sheet_name = ’EMGIMU ’)

200

201 writer.save()

www.manaraa.com

Appendix E

R Code

E.1 Train MLP

1 ################

2 # Library

3 ################

4

5 library(RSNNS)

6 library(DMwR)

7 #####################

8 # load data

9 #####################

10

11 data <- read.csv("D:/Memo/R stuff/Model EMG+IMu/data7gest.csv")

12

13 ##################

14 # Split Data

15 ##################

16

17 sample <- sample.int(n=nrow(data), size = floor (0.2* nrow(data)))

18 train <- data[-sample ,]

19 test <- data[sample ,]

20

21 ###

22 # Scaling

23 ###

24

198

www.manaraa.com

E.1 Train MLP 199

25 colMeans = colMeans(train)#column means

26 col_stdev <- apply(train , 2, sd) #standard deviation

27

28 trainNorm <- scale(train , center=colMeans , scale=col_stdev)

29 trainNorm[is.nan(trainNorm)] = 0

30

31 testNorm <- scale(test , center=colMeans , scale=col_stdev)

32 testNorm[is.nan(testNorm)] = 0

33

34 forUnscaleOutput <- scale(train[, ncol(train)])

35

36

37 ##

38 ##

39

40 ###MLP - NN

41

42 start.time <- Sys.time() ##### start time

43

44 model7Gest <-RSNNS::mlp(trainNorm [,1:76], trainNorm [,77],

45 size = c(300 ,200 ,100) , maxit = 100,

46 learnFunc="BackpropMomentum",linOut = TRUE)

47

48

49 end.time <-Sys.time() ##### end time

50 time.taken <- round(end.time - start.time ,2)

51 time.taken

52

53 predicted <-predict(model7Gest , testNorm [,1:76], testNorm [,77])

54

55 predicted <- DMwR:: unscale(predicted ,forUnscaleOutput)

56

57

58 ##

59 #### Confusion Matrix

60 ##

61

62 result.nnet <- data.frame(actual = test$label , prediction = predicted)

63 roundedresults.nnet <-sapply(result.nnet ,round ,digits =0)

64 roundedresultsdf.nnet = data.frame(roundedresults.nnet)

65

www.manaraa.com

E.2 Predict MLP 200

66 for (i in 1: length(roundedresultsdf.nnet$prediction))

67 {

68 if (roundedresultsdf.nnet$prediction[i]<1)

69 {

70 roundedresultsdf.nnet$prediction[i] = 1

71 }

72 else if(roundedresultsdf.nnet$prediction[i]>7){

73 roundedresultsdf.nnet$prediction[i] = 7

74 }

75 }

76

77 attach(roundedresultsdf.nnet)

78 table(actual ,prediction)

79

80 table7gest <- table(actual , prediction)

81 write.csv(table7gest , file = "D:/Memo/R stuff/table7gest.csv")

E.2 Predict MLP

1 ################

2 # Library

3 ################

4

5 library(RSNNS)

6 library(DMwR)

7

8 #####################

9 # load data

10 #####################

11

12 clist <- c("EMG", "EMGIMU")

13 glist <- c(10 ,7)

14 cvlist <- c(1:5)

15 for (cc in cvlist) {

16 if(cvlist[cc]==1){

17 nlist <- c(10 ,16 ,17 ,18)

18 } else if(cvlist[cc]==2){

19 nlist <- c(13 ,14 ,19 ,22 ,23)

20 } else if(cvlist[cc]==3){

21 nlist <- c(4,6,12,20,24)

22 } else if(cvlist[cc]==4){

www.manaraa.com

E.2 Predict MLP 201

23 nlist <- c(3,5,7,25)

24 } else{

25 nlist <- c(2,9,11,15)

26 }

27 for (gg in glist)

28 {

29 for (ii in clist)

30 {

31

32 if (gg == 10) {

33 load(sprintf("Z:/Memo/R stuff/MLP/CV_Models/Training files/CV%d%s.RData",cc,ii))

34 modelName <- sprintf("modelCV%d_%s",cc,ii)

35 uppLimit = 10

36 } else {

37 load(sprintf("Z:/Memo/R stuff/MLP/CV_Models/Training files/CV%d%s_% dgest.RData",

38 cc,ii,gg))

39 modelName <- sprintf("modelCV%d_%s_%dGest",cc ,ii,gg)

40 uppLimit = 7

41 }

42

43 for (jj in nlist)

44 {

45 data_tst <- read.csv(sprintf("Z:/Memo/R stuff/MLP/CV_Models/

46 Data/dataS%d_%s_%d_gest.csv",jj ,ii,gg))

47 colMeans_tst = colMeans(data_tst)#column means

48 col_stdev_tst <- apply(data_tst , 2, sd) #standard deviation

49

50 trainNorm_tst <- scale(data_tst , center=colMeans_tst , scale=col_stdev_tst)

51 trainNorm_tst[is.nan(trainNorm_tst)] = 0

52

53 forUnscaleOutput <- scale(data_tst[, ncol(data_tst)])

54 if(ii=="EMG"){

55 # parse turns a string or a file into an expression ,

56 # and eval evaluates the expression

57 predictedVal <-predict(eval(parse(text = modelName)), trainNorm_tst[,1:64],

58 trainNorm_tst [,65])

59 }else{

60 predictedVal <-predict(eval(parse(text = modelName)), trainNorm_tst[,1:76],

61 trainNorm_tst [,77])

62 }

63

www.manaraa.com

E.2 Predict MLP 202

64

65 predicted <- DMwR:: unscale(predictedVal ,forUnscaleOutput)

66 result.nnet <- data.frame(actual = data_tst[,ncol(data_tst)], prediction = predicted)

67 roundedresults.nnet <-sapply(result.nnet ,round ,digits =0)

68 roundedresultsdf.nnet = data.frame(roundedresults.nnet)

69

70 for (i in 1: length(roundedresultsdf.nnet$prediction))

71 {

72 if (roundedresultsdf.nnet$prediction[i]<1)

73 {

74 roundedresultsdf.nnet$prediction[i] = 1

75 }

76 else if(roundedresultsdf.nnet$prediction[i]>uppLimit){

77 roundedresultsdf.nnet$prediction[i] = uppLimit

78 }

79 }

80

81 attach(roundedresultsdf.nnet)

82 tableData <- table(actual , prediction)

83 print(tableData)

84 tt <- data.frame(data_tst[,ncol(data_tst)], roundedresultsdf.nnet$prediction)

85 write.csv(tableData , file = sprintf("Z:/Memo/R stuff/MLP/CV_Models/Predictions/

86 S%d_%s_%d_gest_CM.csv",jj,ii,gg))

87

88 write.csv(tt, file = sprintf("Z:/Memo/R stuff/MLP/CV_Models/Predictions/

89 S%d_%s_%d_gest_predictions.csv",jj,ii,gg))

90 }

91 }

92 }

93 }

www.manaraa.com

VITA

Name: José Guillermo Colĺı Alfaro

Post-secondary Universidad Modelo

Education and Mérida, Yucatán, México

Degrees: 2009–2013 B.E.Sc.,

Biomedical Engineering

Honours and CONACYT Scholarship-Master’s Program

Awards:

Related Work Teaching Assistant

Experience: MSE 3302 – Sensors and Actuators

ECE 9053 – Robotic Manipulators

The University of Western Ontario

2018–2019

Research Assistant

The University of Western Ontario

2017–2019

Summer Research Assistant

Texas A&M University

2016

Publications J. G. Colli-Alfaro, A. Ibrahim, and A. L. Trejos, “Design of user-independent

hand gesture recognition using multilayer perceptron networks and sensor fu–

sion techniques,” in IEEE 16th International Conference on Rehabilitation Ro–

botics, (Toronto, Ontario), pp. 1103–1108, June 24-28, 2019.

	Implementation of User-Independent Hand Gesture Recognition Classification Models Using IMU and EMG-based Sensor Fusion Techniques
	Recommended Citation

	Abstract
	Lay Summary
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature and Acronyms
	Introduction
	Motivation
	General Problem Statement
	Research Objectives and Scope
	Overview of the Thesis

	Literature Review
	Introduction
	Wrist Anatomy
	Wrist Rehabilitation
	Constraint-Induced Movement Therapy
	Bilateral Movement Training

	Robot-Assisted Therapy
	Motion Intention Detection vs. Gesture Recognition
	User-Indpendent Gesture Recognition
	EMG Pattern Recognition
	EMG Data Collection
	EMG Data Segmentation
	Teager-Kaiser Energy Operator
	Data Windowing

	Feature Extraction
	Time Domain Features
	Frequency Domain Features

	Classification Methods
	Support Vector Machines
	Least Squares Support Vector Machines
	Multilayer Perceptron Neural Networks

	User-Independent Classification Methods
	Particle Adaptive Classifier
	Adaptive LS-SVM
	Bilinear Models

	Conclusion

	Data Collection and Processing
	Equipment
	The Myo Armband
	Data Analysis Software

	Participant Recruitment
	Experimental Protocol
	Myo Armband Placement
	Gestures

	Data Processing
	Signal Segmentation
	Feature Extraction
	Cross-Validation Sets

	Summary of Data Collection and Processing

	Classification Methods
	Classification Method: PAC
	Feature Normalization and Feature Reduction
	Calibration Phase
	The Representative Sample Set
	The Representative Particles Attractive Zone
	PAC Evaluation

	Classification Method: Adaptive LS-SVM
	Calibration Phase
	The Leave-One-Out Prediction
	Adaptive LS-SVM From Multiple Subjects
	Adaptive LS-SVM Evaluation

	Classification Method: Bilinear Model-based Classification
	Bilinear Model-based Classification: Datasets
	Bilinear Model Learning
	Calibration Phase
	Bilinear Model Evaluation

	Classification Method: MLP Neural Networks
	MLP Dataset
	MLP Learning
	MLP Network Evaluation

	Results and Discussion
	PAC Classification
	PAC: 10 Gesture Classification
	PAC: 7 Gesture Classification
	PAC: Discussion

	Adaptive LS-SVM Classification
	Adaptive LS-SVM: 10 Gesture Classification
	Adaptive LS-SVM: 7 Gesture Classification
	Adaptive LS-SVM: Discussion

	Bilinear Model-Based Classification
	Bilinear Models-Based Classification: 10 Gesture Classification
	Bilinear Models-Based Classification: 7 Gesture Classification
	Bilinear Models-Based Classification: Discussion

	MLP Networks Classification
	MLP Networks: 10 Gesture Classification
	MLP Networks: 7 Gesture Classification
	MLP Networks: Discussion

	Comparison of Classification Methods
	Pairwise Comparisons
	Best Sensor Modality Pairwise Comparisons

	Conclusion

	Concluding Remarks
	Contributions
	Limitations and Future Work

	References
	Appendices
	Permissions and Approvals
	Ethics Approval
	Permission for fig:wristbones

	MATLAB Code
	Data Processing Codes
	Extract Subject Data Code
	Main Routine Code
	Signal Filtering Codes
	Signal Conditioning Codes
	Onset Detection Code

	Feature Extraction Codes
	Vectorization Code
	MAV and MAVS Features Code
	WL Feature Code
	ZC Feature Code
	AR Coefficients Feature Code
	Mean Feature Code
	Std Feature Code
	RMS Feature Code

	Feature Normalization Code
	Feature Reduction Code
	Classification Codes
	LS-SVM Code
	Predict LS-SVM Code
	Get LS-SVM Parameters Code
	Compute RBF Kernel Code

	PAC Code
	K Medoids Code
	Universal Incremental Learning Code

	Adaptive LS-SVM Code
	Inverse Block Matrix Code
	Projected Sub-Gradient Descent Code

	Bilinear Model Codes
	Learn Bilinear Models Code
	Style and Content Separation Code
	Vector Transpose Code

	General Purpose Codes
	Reduce Number of Gestures Code

	Mathematical Formulations
	Least Squares Support Vector Machines
	Adaptive LS-SVM
	Adaptive LS-SVM From Multiple Subjects

	Python Code
	Real-Time EMG Data Streaming
	Classification Using Bilinear EMG Models

	R Code
	Train MLP
	Predict MLP

	Vita

